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Abstract

This paper introduces the approach we adopted
for the SemEval-2025 "Food Hazard Detec-
tion" task, which aims to predict coarse-grained
categories (such as "product category" and
"hazard category") and fine-grained vectors
(such as specific products like "ice cream" or
hazards like "salmonella") from noisy, long-
tailed text data. To address the issues of dirty
data, as well as the severe long-tail distribution
of text labels and length in the data, we pro-
posed a pipeline system. This system combines
data cleaning, LLM-based enhancement, label
resampling, and ensemble learning to tackle
data sparsity and label imbalance problems.
The two subtasks have strong semantic related-
ness. By integrating them into a unified mul-
titurn dialogue framework, we fine-tuned five
models using a bagging approach. Ultimately,
we achieved notable results on both subtasks,
with F1 scores of 80.17% (ranked 4th) for Sub-
task 1 (ST1) and 52.66% (ranked 3rd) for Sub-
task 2 (ST2).

1 Introduction

Food safety incidents pose significant risks to pub-
lic health and economic stability, necessitating
rapid detection and transparent decision-making
systems. The SemEval 2025 Task on Food Haz-
ard Detection addresses this challenge by evalu-
ating systems that classify food incident reports
from web resources into predefined categories and
specific vectors for "product" and "hazard." This
task focuses on English-language reports, aiming
to automate the discovery of food-related risks
from social media and news platforms, where
timely and interpretable predictions are critical
for mitigating economic and health impacts. The
task requires dual subtasks: ST1 for predicting
hazard and product categories (e.g., "meat, eggs,
and dairy" or "pathogenic bacteria") and ST2 for
identifying exact hazard and product entities (e.g.,
"Salmonella" or "ice cream"). With 1,142 unique

products and 128 hazards distributed across im-
balanced categories, the task demands robustness
against long-tail distributions and noisy text, reflect-
ing real-world complexities in food safety monitor-
ing (Randl et al., 2025, 2024).

Our system integrates data augmentation, label
resampling, and ensemble learning to tackle these
challenges. Inspired by advances in NLP for low-
resource scenarios, (Wei and Zou, 2019) proposed
some traditional data augmentation methods: Syn-
onym Replacement, Random Insertion, Random
Swap, and Random Deletion. In addition to these,
advanced strategies like metadata-aware data aug-
mentation (Zhang et al., 2021) (e.g., substituting
similar products from a food ontology) and proto-
typical networks (Snell et al., 2017) show promise
but remain untested in multi-task food safety con-
texts. Against this backdrop, we employed large
language models (LLMs) to generate synthetic
summaries of raw incident reports. This approach
not only enhanced the diversity of the dataset but
also preserved its semantic integrity.

To address the severe class imbalance in our
dataset, we employed a combination of oversam-
pling techniques for minority classes (Chawla et al.,
2002) and a bagging ensemble (Breiman, 1996)
comprising five fine-tuned models with Low-Rank
Adaptation (LoRA) (Hu et al., 2022). This ap-
proach effectively mitigated the imbalance and
enhanced model performance. MTLN (Multi-
dimensional Type-slot label interaction Network)
(Wan et al., 2023) is a neural network-based MTL
framework designed to handle multiple natural lan-
guage processing tasks through a unified architec-
ture. Compared with single-task learning, multi-
task learning (MTL) demonstrates enhanced gen-
eralization capabilities by leveraging task correla-
tions and complementarity, which has been theo-
retically validated. Given that ST1 and ST2 in our
challenge are both focused on food hazard detec-
tion and are highly related, we integrated Large
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Language Models (LLMs) to combine ST1 and
ST2 into a multi-turn dialogue framework. This
framework enables the model to effectively utilize
data from multiple tasks, leading to improved gen-
eralization and adaptability, while also mitigating
issues such as underfitting or overfitting (Guo et al.,
2018).

Our experiments yielded competitive results:
80.17% F1-score (4th rank) for ST1 and 52.66%
F1-score (3rd rank) for ST2. Quantitative analy-
sis demonstrated that, compared to single-model
predictions, employing bagging voting with five
models boosted performance by 1.09% for Subtask
1 and 3.14% for Subtask 2. This indicates the effec-
tiveness of the bagging voting approach, especially
in significantly enhancing the model’s generaliza-
tion ability when dealing with long-tailed label
distributions. However, the system encountered
difficulties in handling ambiguous hazard descrip-
tions (for example, distinguishing between "listeria
monocytogenes" and "listeria spp"). This reflects
the limitations of fine-grained entity recognition ob-
served in the food safety literature. Qualitative er-
rors further highlighted the need for context-aware
disambiguation, particularly for overlapping hazard
categories such as "sulphur dioxide and sulphites"
versus "sulphates/sulphites." These findings align
with the broader challenges in interpretable AI for
food risk assessment (Ribeiro et al., 2016), empha-
sizing the trade-off between model complexity and
explainability.

This paper demonstrates the following contribu-
tions:

• Through text summarization based on prompt
engineering, we enhanced the diversity of the
data, which helps to improve the model’s gen-
eralization ability.

• Given the correlation between the two sub-
tasks, we constructed them into a multi-turn
dialogue format, which improved the model’s
performance.

• On the validation set leaderboard, ST1 and
ST2 achieved scores of 86.41% (ranked 1th)
and 54.32% (ranked 4th), respectively. On the
test set leaderboard, we were ranked 4th for
ST1 and 3rd for ST2.

2 System Overview

As illustrated in Figure 1, our experimental work-
flow begins with a dataset sourced from web scrap-

ing, which contains noisy data and suffers from
severe label imbalance as well as a pronounced
long-tail distribution of text lengths. To mitigate
these issues, we first applied regular expressions
to clean the data by removing elements such as hy-
perlinks, HTML formatting, and email addresses.
Following this, we utilized a large language model
with prompt engineering to generate textual sum-
maries of the cleaned data, aiming to augment our
dataset and enhance its diversity. This was achieved
by concatenating the original texts with their gen-
erated summaries to form an enriched dataset.

To address the label imbalance problem within
this enhanced dataset, we implemented label resam-
pling techniques. Subsequently, using a Bagging
approach, we sampled five subsets of data with
replacement. Considering the strong interrelation
between the two subtasks (ST1: food hazard predic-
tion; ST2: precise vector detection), we combined
them into a unified framework through a multi-turn
dialogue format. Specifically, we performed Super-
vised Fine-Tuning (SFT) using the LoRA method
across these five subsets. This process resulted
in the training of five distinct models, whose out-
puts were aggregated through voting to determine
the final predictions, thereby achieving improved
performance and robustness.

2.1 Supervised Fine-Tuning (SFT)
The main approach employed across all two sub-
tasks was Supervised Fine-Tuning (SFT) (Ouyang
et al., 2022). In this training phase, model param-
eters are optimized through a supervised learning
objective designed to enhance predictive perfor-
mance on annotated datasets.

The standard formulation of the SFT loss func-
tion can be expressed as:

LSFT =
1

N

N∑

i=1

Lcross-entropy(yi, ŷi) (1)

where Lcrossentropy is the cross-entropy loss be-
tween the true label yi and the predicted label ŷi,
and N is the number of training samples.

2.2 LoRA
LoRA was implemented for adjusting large pre-
trained models. This methodology deploys train-
able low-rank decomposition matrices A and B to
approximate parameter adjustments, thereby mini-
mizing trainable parameters while preserving the
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Figure 1: Task experimental progress

base model’s capabilities. The adaptation process
for a given weight matrix W operates through ad-
ditive low-rank projections:

In addition to the techniques above, LoRA was
implemented for adjusting large pre-trained mod-
els. This methodology deploys trainable low-rank
decomposition matrices A and B to approximate
parameter adjustments, thereby minimizing train-
able parameters while preserving the base model’s
capabilities. The adaptation process for a given
weight matrix W operates through additive low-
rank projections:

Wnew = W +∆W = W +ABT (2)

where A and B are low-rank matrices that are
learned during fine-tuning. This approach allows
the model to adapt to new tasks with fewer trainable
parameters, making it computationally efficient.

The LoRA loss function is typically added to the
standard SFT loss:

LLoRA = LSFT + λ ∥A∥2F + λ ∥B∥2F (3)

where ∥·∥F denotes the Frobenius norm and λ is
a regularization parameter that controls the strength
of the low-rank adaptation.

2.3 Data Preprocessing

The data provided for this task is sourced from web
pages. Through data analysis, we identified the
presence of unwanted elements such as hyperlinks,
HTML formatting, and email addresses. To address
this, we applied regular expression preprocessing
to remove these components.

Figure 2: Distribution of labels for hazard and product
in Subtask 2.

2.4 Data Augmentation
In our approach, we address the challenges posed
by noisy data and imbalanced label distributions
through robust data augmentation and resampling
strategies. Initially, we generate concise summaries
of cleaned texts using a large language model based
on prompt-based summarization. These summaries
are then concatenated with their original texts to
form an augmented dataset. This enhancement
strategy serves multiple purposes:

• Summarization aids in standardizing text rep-
resentation by distilling essential information,
thereby reducing noise and improving model
interpretability.

• It boosts data diversity by introducing alterna-
tive phrasings and sentence structures, which
helps mitigate the risk of overfitting.

• It accentuates crucial contextual elements, par-
ticularly beneficial for tackling label imbal-
ance. By explicitly highlighting key informa-
tion related to product categories and hazard
classes, the model receives clearer classifica-
tion signals.

Figure 2 illustrates the label distribution for haz-
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ard and product classes, revealing a severe long-tail
distribution. To further mitigate this inherent is-
sue, we employed resampling techniques on the
augmented dataset. Specifically, for underrepre-
sented categories (e.g., 74.2% of product categories
have fewer than five samples), we performed re-
sampling to ensure each category had at least five
samples. Through multiple experimental valida-
tions, we found that augmenting small sample cate-
gories to a minimum of five entries yielded the best
performance on the validation set. This balanced
representation enabled our models to learn more
robust and generalizable features, significantly im-
proving overall performance.

2.5 Ensemble

After undergoing data preprocessing, data augmen-
tation, and label resampling, the original dataset
was transformed into a more balanced, diverse, and
clean augmented dataset. Based on this enhanced
dataset, we employed a bagging approach to per-
form bootstrapping, generating five subsets of data
for training five Phi-4 models. For each model, we
selected the weights that achieved the best perfor-
mance on the validation set to evaluate the models
on the official test set provided by the competi-
tion organizers. Finally, we integrated the predic-
tions from all five models using an ensemble voting
mechanism to produce our final submission for the
test leaderboard.

2.6 Metrics

This task evaluates the joint marco-F1 for hazard
and product. The composite evaluation metric is
defined as:

Composite-F1 =
1

2

(
F1h + F1p|h

)
(4)

Where the component metrics are calculated as:

F1h =
2 · Precisionh · Recallh
Precisionh + Recallh

(5)

F1p|h =
2 · Precisionp|C · Recallp|C
Precisionp|C + Recallp|C

(6)

The conditional set C is formally defined as:

C = { i | ŷh,i = yh,i } (7)

Where the subscripts h and p represent hazard
and product, respectively.

3 Experimental Setup

This section describes various experiments con-
ducted on model fine-tuning and inference, aimed
at exploring the impact of different approaches
on the model’s F1-score. We applied the LoRA
method to fine-tune the Phi-4 models, using a rank
of 4, an alpha of 8, and targeting all layers. The
Phi-4 model parameters were frozen, with only the
low-rank adapter parameters being trained.

During the LoRA-based domain fine-tuning,
we trained large models using the Llama-Factory
(Zheng et al., 2024) framework and the Adam
(Kingma and Ba, 2014) optimization algorithm.
The training included a warm-up step of 10% and
a learning rate of 5e-5. Additionally, we performed
distributed training using Deepspeed Zero-3 (Rajb-
handari et al., 2020) on two NVIDIA A100 GPUs
(80GB), with a batch size of 1 per GPU and gradi-
ent accumulation of 12, for a total of 5 epochs.

In this study, we employed various techniques
and used bagging to sample five subsets of data,
training five distinct models. We then evaluated
their performance on the SemEval-2025 official
dataset by aggregating the predictions from the
five LoRA-fine-tuned LLMs. The best checkpoints
were selected based on the highest F1-score on the
validation set, and a voting mechanism was used to
make final predictions.

4 Results

4.1 Main Quantitative Findings

As can be seen from Table 1, our system performed
robustly on both subtasks of the SemEval 2025
Food Hazard Detection Challenge. For ST1, which
involves the prediction of food hazard categories,
our model achieved an F1 score of 80.17%, rank-
ing 4th among all participants. For ST2, which
involves the prediction of the exact product and
hazard vectors, our model achieved an F1 score of
52.66%, also ranking 3rd. These results highlight
the effectiveness of our approach in tackling the
challenges of class imbalance and long-tail distri-
bution in the dataset.

Task name F1(%) Rank
ST1 80.17 4
ST2 52.66 3

Table 1: Results of Phi-4 on the test leaderboards.
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4.2 Ablation Analysis

We conducted an ablation study to evaluate the
contributions of various components in our system,
as shown in the table 2. The experiments were
conducted on the official test split.

ST1 ST2
Method F1 (%) F1(%)

Single-turn 61.52 35.43
multi-turn 63.97 37.52
multi-turn

+ Data Augmentation 79.08 49.52
multi-turn

+ Data Augmentation
+ Bagging 80.17 52.66

Table 2: Ablation results on Phi-4.

Single-turn: The model is tasked with complet-
ing both ST1 and ST2 predictions simultaneously.
The baseline approach, which did not incorporate
multi-turn dialogue or data augmentation, achieved
an F1 score of 61.52% on ST1 and 35.43% on ST2.

Multi-turn: First, the model predicts the hazard-
category and product-category in ST1. Then, based
on these initial predictions, it proceeds to predict
the results for ST2. Detailed prompt information
can be found in Appendix A.1. By incorporating
multi-turn dialogue, the system showed improve-
ment with F1 scores of 63.97% (ST1) and 37.52%
(ST2), demonstrating that the use of contextual
dialogue helps in better capturing task-specific in-
formation.

Multi-turn + Data Augmentation: Adding data
augmentation through text summarization further
boosted the system’s performance, with F1 reach-
ing 79.08% (ST1) and F1 increasing to 49.52%
(ST2). This indicates that data augmentation effec-
tively enhanced model generalization by introduc-
ing more diverse training examples.

Multi-turn + Data Augmentation + Bagging: The
final system, which included data augmentation
and Bagging for model ensembling, showed the
highest performance with F1 of 80.17% (ST1) and
F1 of 52.66% (ST2). This demonstrates the benefits
of combining multiple models to improve robust-
ness and reduce variance in predictions.

These results underscore the effectiveness of our
approach, where multi-turn dialogue, data augmen-
tation, and ensemble learning via Bagging were
key contributors to the performance improvements.

4.3 Error Analysis
To gain insights into the types of errors made by our
system, we analyzed a sample of the predictions.
While the system performed well overall, it tended
to struggle with highly imbalanced classes, partic-
ularly in ST2 where the task requires predicting
specific product and hazard vectors. In some cases,
the model incorrectly predicted the exact hazard or
product due to the complexity of distinguishing be-
tween similar categories in long-tail distributions.
Further investigation and manual tagging of errors
revealed that the most common mistakes were due
to ambiguous or noisy text data, which is a chal-
lenge inherent in web-scraped datasets.

5 Conclusion

In this work, we proposed a multi-turn dialogue
modeling approach combined with data clean-
ing, prompt-based data augmentation, label re-
sampling, and a bagging strategy to tackle the Se-
mEval 2025 food hazard detection challenge. Our
final system achieved F1 scores of 80.17% and
52.66% on Subtask 1 and Subtask 2, respectively,
securing 4th place in ST1 and 3rd place in ST2.
From the ablation experiments, we observed that
combining multi-turn modeling with data augmen-
tation and ensemble methods can effectively mit-
igate the long-tail distribution and noise issues in
real-world datasets. For future work, we plan to
explore more advanced model interpretability tech-
niques, domain-specific knowledge incorporation,
and automated sampling strategies to further im-
prove both the robustness and explainability of food
hazard detection systems.

6 Limitations

Despite the promising results achieved by our
multi-turn approach with data augmentation and
bagging, several limitations remain. First, our re-
liance on large language models for text summa-
rization and augmentation introduces potential bi-
ases in the generated data. Since these models
are trained on broad corpora, they may inadver-
tently produce content that is contextually inconsis-
tent or irrelevant for specific food hazard scenarios,
thereby influencing both model training and evalu-
ation outcomes.

Second, although label resampling and bagging
helped address class imbalance, rare classes remain
challenging. In real-world applications, novel or ex-
tremely infrequent hazards and products may not be
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adequately represented, leading to degraded perfor-
mance when encountering such cases. Furthermore,
the final system relies on multiple model ensem-
bles and LoRA-based fine-tuning, which can be
computationally expensive, making the approach
less feasible for teams with limited resources.

Finally, while we integrated ST1 (hazard-
category, product-category) and ST2 (hazard, prod-
uct) within a multi-turn framework, our current
interpretability methods are still somewhat sim-
plistic. Generating “vector” explanations offers
initial transparency, yet deeper domain-specific in-
sights—such as causal chains or uncertainty es-
timates—are not thoroughly explored. Future
work could incorporate more advanced explana-
tion mechanisms to provide richer, more reliable
interpretability in real-world food safety applica-
tions.
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A Appendix

A.1 Fine-tuning Prompt
In Figure 3, the upper part shows the prompt for
the first dialogue round and the lower part shows
the prompt for the second dialogue round. The red
numbers indicate the required input information: 1⃝
represents the input title; 2⃝ represents the input
text after cleaning it using regular expressions; 3⃝
represents the summary of the input text gener-
ated by LLM; 4⃝ represents the product-category
predicted in the previous round; 5⃝ represents the
hazard-category predicted in the previous round.

By constructing two-round dialogue fine-tuning
prompts in this manner, the model can focus on
both coarse-grained food and hazard categories,
as well as the relationships between finer-grained
food and hazard details. This approach enhances
the model’s performance by allowing it to better
capture the nuances between different levels of
categorization.

Figure 3: An Example of Prompt Engineering for Multi-
turn Dialogue Based on LoRA Fine-tuning.
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