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Abstract
This paper presents a system developed for
SemEval 2025 Task 8: Question Answering
(QA) over tabular data. Our approach integrates
several key components: text-to-SQL and text-
to-code generation modules, a self-correction
mechanism, and a retrieval-augmented genera-
tion (RAG). Additionally, it includes an end-to-
end (E2E) module, all orchestrated by a large
language model (LLM). Through ablation stud-
ies, we analyzed the effects of different parts
of our pipeline and identified the challenges
that are still present in this field. During the
evaluation phase of the competition, our solu-
tion achieved an accuracy of 80%, resulting in
a top-13 ranking among the 38 participating
teams. Our pipeline demonstrates a significant
improvement in accuracy for open-source mod-
els and achieves a performance comparable to
proprietary LLMs in QA tasks over tables. The
code is available at this GitHub repository.

1 Introduction

Accessing structured data through natural language
(NL) queries is crucial in various fields. However,
converting NL into operations that retrieve outputs
such as strings, numbers, booleans, or lists contin-
ues to be a significant challenge.

This paper outlines our team’s participation in
SemEval 2025 Task 8: DataBench (Osés Grijalba
et al., 2024). This competition assesses question-
answering (QA) systems working with tabular data,
taking into account various formats, data quality
issues, and complex question types. Our aim is to
develop a system that accurately retrieves answers
from tables, despite challenges such as missing
values, inconsistencies, and ambiguous queries.

We focus on improving Large Language Models
(LLMs) using Chain-of-Thought (CoT) reasoning
(Wang et al., 2023; Cui et al., 2024). By integrat-
ing reasoning-inducing prompts, we enhance LLM-
based code generation and decision-making. Addi-
tionally, our approach includes an end-to-end (E2E)

Figure 1: Overview of our system, featuring two so-
lutions: end-to-end (E2E) and code-based. The code-
based solution utilizes a self-correction mechanism and
retrieval-augmented generation (RAG), with the final
decision made by the orchestrator model.

pipeline and an LLM orchestrator to improve accu-
racy. To further refine performance, we implement
several techniques aimed at reducing model forget-
fulness. We introduce structured checklists to help
the model verify each step, reducing errors in multi-
hop reasoning. By combining prompt engineering,
structured reasoning, and workflow optimizations,
our system aims to achieve high exact-match ac-
curacy. This paper details our system’s architec-
ture and key techniques (Sec. 3), dataset overview
(Sec. 4), and experimental results (Sec. 5).

Our findings offer key insights for enhancing
LLM-driven QA for structured data, bridging the
gap between open-source and proprietary models.
Notably, our development set results showed that
open-source LLMs achieved an accuracy of 88%,
surpassing GPT-4o’s 74%.
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2 Related work

Question Answering (QA) over tabular data has
gained significant attention due to the growing need
for structured information retrieval (Sui et al., 2024;
Liu et al., 2023; Singh and Bedathur, 2023; Ruan
et al., 2024; R. et al., 2024). Research in this field
has progressed with key datasets, such as FeTaQA
(Nan et al., 2021) and ChartQA (Masry et al., 2022),
as well as a large Wikipedia-based dataset, Open-
WikiTable (Kweon et al., 2023). Various method-
ologies have been explored in recent surveys (Fang
et al., 2024; Jin et al., 2022), including reinforce-
ment learning and selective classification for text-
to-SQL (Zhong et al., 2017; Somov et al., 2024;
Somov and Tutubalina, 2025), pre-trained deep
learning models (Abraham et al., 2022; Mouravieff
et al., 2024), and few-shot prompting techniques
(Guan et al., 2024). Building on previous work, we
introduce a hybrid LLM-based pipeline that com-
bines multiple techniques to improve performance.

3 System Description

Our system, as shown in Fig. 3, leverages LLMs
and consists of the following key elements:

1. Text-to-SQL and Text-to-Code models to
translate NL questions into code executable
against tabular data (Sec. 3.2; Sec. 3.3)

2. RAG used to enrich prompts with relevant
rows and delete irrelevant columns (Sec. 3.4);

3. Self-correction mechanism used to correct po-
tential errors during execution (Sec. 3.5);

4. An E2E answering model to answer questions
that target semantic understanding (Sec. 3.7);

5. An orchestrator model to make the final deci-
sion between provided solutions (Sec. 3.8).

3.1 Models

We used state-of-the-art instruction-tuned mod-
els featuring various model families: Llama
(Grattafiori et al., 2024) (version 3.3 with 70b pa-
rameters as an orchestrator and 3.2 version with 3b
for retrieval), Codestral (20.51 version) (Mistral AI
Team, 2025) and Qwen Coder Instruct (2.5 version
with 32b parameters) (Hui et al., 2024) for SQL
and Code generation, also MiniMax-01 (MiniMax
et al., 2025) for E2E solution. The selection of

the models was driven by their outstanding perfor-
mance in various benchmarks and the fact that they
are open-source.

3.2 SQL code generation

Here the system resorts to generating SQL queries
while using a carefully crafted prompt with a few
relevant rows injected in it (Sec. 3.4) and with a
suggested list of relevant columns to use (Sec. 5.5).
The query is executed against the in-memory
database (SQLite database via the SQLAlchemy
package in our case), and the result is formatted
and returned as a potential solution.

3.3 Pandas code generation

Here we prompt LLM to generate Python code with
the use of Pandas library. The code is then executed
against a Pandas Dataframe within a sandboxed
environment with a timeout to prevent indefinite
loops. The result of the execution is recorded as a
potential solution. Along with the result, we record
query success status and error text (if present) for
possible future error correction (Sec. 3.5).

3.4 Retrieval

The Databench dataset contains data similar to
what you might find in the real world, which
presents certain challenges. One of these chal-
lenges is accurately filtering data based on spe-
cific properties, which often requires contextual
knowledge. For example, to answer the question
“How many customers are from Japan?”, the model
needs to know that “japan” is spelled in lowercase
in the dataset. To tackle this challenge, we imple-
mented a retrieval step (Gao et al., 2024). We first
created sentence embeddings for each relevant col-
umn (previously identified in Sec. 5.5) and stored
them for efficient searching. When a question was
asked, we searched these embeddings to find the
top three rows that were most semantically simi-
lar. The retrieved data was then used to enrich the
LLM’s context, enabling the model to answer such
questions more accurately and efficiently.

3.5 Self-correction

The system incorporates a self-correction mech-
anism (Deng et al., 2025) that attempts to refine
solutions that have failed execution attempts. Af-
ter the failure of the Pandas solution, the system
passes meta-info (schema, error message), along
with the question back to LLM. Then new solu-
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Figure 2: System performance on the dev set. Llama3.3-70b-instruct is used as an orchestrator. As a full pipeline,
we’re using: Codestral and Qwen Coder for Python and SQL, with Minimax E2E, managed through an orchestrator.

tion is generated. The same rules apply to SQL
solutions.

3.6 Reasoning step

Recent advancements in prompting techniques,
such as chain-of-thought prompting (Wei et al.,
2022), have demonstrated that large language mod-
els (LLMs) can be guided to perform complex rea-
soning by structuring prompts to include interme-
diate reasoning steps. In our approach, we leverage
this technique by explicitly instructing the LLM
to reason extensively before providing its final an-
swer. To extract only the relevant answer from
the model’s response, we employ fuzzy matching,
which allows us to identify and isolate the desired
output even when the response contains additional
explanatory text or reasoning steps.

3.7 E2E answer generation

This method completely skips the code generation.
The dataset is converted into human-readable text
(markdown), then given to the LLM along with
the underlying question. The model generates a
direct answer. Model must put solution into one of
the following data formats: Boolean, List, Number
or String. The method is used to take advantage
of LLM’s ability to understand text and, therefore,
answer questions about text data from the dataset.

Unlike code-generation, an E2E solution may
only work well in a limited context: that is why we
use the Retrieval step (see Sec. 3.4) and combine
E2E with code-generation approaches to further

increase performance.

3.8 Orchestrator

We use Llama (3.3 instruct version with 70b param-
eters) to choose the most probable solution among
all presented. The model is provided with several
solutions that were successfully executed. Each so-
lution has code and a text-formatted result. Prompt
(See Appendix prompt) has specific recommenda-
tions on how to choose the most probable solution.
The model is incapable of generating new solution
on the fly and only chooses between the presented
options. Further orchestrator’s performance analy-
sis is in Sec. 5.3.

4 Dataset

The dataset comprises 65 publicly available tables
across five domains: Health, Business, Social Net-
works & Surveys, Sports & Entertainment, and
Travel & Locations. It retains real-world noise
to enhance robustness and includes 1300 manu-
ally curated QA pairs in English, with 500 used
for the test set across five answer types: boolean,
category, number, list[category], and list[number].
DataBench is provided in two versions: the full
dataset and DataBench lite, a smaller subset con-
taining the first 20 rows per dataset. Key dataset
statistics are summarized in Tab. 4. To illustrate
dataset diversity, Fig. 5 presents five representative
question types. Our dev set consists of the first 100
QA pairs, designated for hypothesis testing.

A notable challenge was handling emojis in col-
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umn names and textual data, as exact answer match-
ing was required per competition rules, but LLMs
struggle with emojis (Qiu et al., 2024). They often
insert spaces or omit them, leading to inaccuracies.
We mitigated this issue by:

a) Replacing emojis in column names with
unique symbols (hashes) for easier query gener-
ation.

b) Restricting the orchestrator to selecting an-
swers from SQL or Python outputs rather than gen-
erating responses, ensuring accuracy.

4.1 Accuracy Calculation
The evaluation was conducted using the framework
provided in the repository. The evaluation metric
was calculated by the rules presented in Fig. 4.1.
The approach is flexible and provides a fair metric
calculation for different pipelines.

Comparison Rules

Numbers: Truncated to two decimals.

Categories: Compared directly as-is.

Lists: Order is ignored.

5 Experiments and Evaluation

This section details the experiments conducted to
evaluate our system’s performance in Table QA.
More experiments are in Appx. A.1 and A.2.

As shown in Fig. 2, reformulating the question
generally decreases accuracy (we discuss why in
Sec. 5.4), as seen in setups like “Codetral Python
+ Reformulation” (68%) and “Minimax End-to-
End + Reformulation” (52%), both of which per-
form worse than their non-reformulated counter-
parts. Whereas, adding SQL capabilities tends to
increase accuracy, with “Codetral Python + SQL”
reaching 84%. The highest accuracy is achieved
when multiple models are combined and orches-
trated, such as “Codetral and Qwen Coder Python
(with orchestrator)” and “Full open-source pipeline
(with orchestrator)”, both achieving 88%, surpass-
ing single-model approaches.

5.1 Performance of Code-Generation
Text-to-SQL and text-to-code generation per-
formed well on structured queries but struggled
with ambiguous questions that lack explicit con-
text. The self-correction mechanism improved ac-
curacy by refining failed queries. However, unclear
queries, such as “Provide the median number of

claims for B2 and S1 kinds” could lead to misinter-
pretations, whether computing a single median or
separate medians, resulting in incorrect outputs.

5.2 Effectiveness of E2E Processing

The E2E approach, which skips code generation
and directly answers questions using a textual repre-
sentation of the table, performed well on questions
requiring semantic understanding. For instance,
it excelled at answering non-exact questions like
“Is there a patent related to ’communication’ in
the title?”. Furthermore, models were given the
task of answering the question: “How many dis-
tinct male participants took part in the competi-
tion?” based solely on participants’ names. This
required the models to infer the participants’ sex
from their names that is a task that LLMs typically
excel at. However, solving this problem using SQL
or Python alone would be quite challenging. In
such cases, both systems complemented each other,
leveraging the strengths of LLMs for context under-
standing and the structured data processing power
of SQL and Python.

5.3 Orchestrator Performance

The orchestrator model, which selects the most
probable solution from multiple candidates, gen-
erally performed well. However, its accuracy de-
pended heavily on the quality of the candidate so-
lutions. If all candidates were incorrect, the model
couldn’t generate a correct answer on its own. Ad-
ditionally, when the majority of candidate answers
were incorrect, the orchestrator sometimes failed
to select the correct solution, instead favoring the
most frequent or popular response.

We propose, for future research, exploring auto-
matic methods to determine whether a given ques-
tion is better suited for SQL or Python-based query-
ing. This could help the orchestrator make more
informed decisions, leading to improved accuracy
and efficiency in selecting the correct answer.

5.4 Question Reformulation

Handling ambiguous or under-specified queries is
a key challenge in structured data QA with LLMs
(Zhao et al., 2024). We tested LLM-based question
reformulation to make queries more explicit, but it
proved counterproductive (as seen in Fig. 2). Errors
in reformulation at the pipeline’s start led to fail-
ures without any recovery mechanism. Conversely,
without reformulation, some models inferred intent
correctly, enabling the orchestrator to choose the
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Original Name Renamed Column

DMC Duff Moisture Code
DC Drought Code
ISI Fire Spread Index
RH Relative Humidity

Table 1: Renaming ambiguous column names for clarity
using context and LLM insights.

right response even if others failed. While reformu-
lation may be less effective with multiple models
(e.g., in our case: two SQL, two Python, one E2E),
further research is needed to confirm this.

5.5 Predicting Useful Columns
E2E models often encounter challenges when work-
ing with long-context data, a difficulty sometimes
referred to as “The Needle In a Haystack problem”
(Laban et al., 2024). To address this problem, we
introduced LLM-driven column selection. The sep-
arate model is given a description of the query and
asked to select the most relevant columns before
attempting to generate an answer. This method en-
sures that only the useful parts of the dataset are
provided to the E2E model, reducing context length
and minimizing the risk of hallucinations.

5.6 Column name explanation
Structured datasets often have ambiguous or abbre-
viated column names, making LLM comprehen-
sion challenging. To address this, we introduced
column reformulation. For example, given the table
“078 Fires” and initial data rows, LLMs effectively
generated clearer column names.

Tab. 1 highlights the ambiguity of original col-
umn names, which were clarified through renaming
for better usability. However, this poses challenges,
as users may refer to original names, necessitating
entity recognition for query adjustments, which is
beyond the scope of our study. Misinterpretation is
also a risk: abbreviations like DC and DMC have
multiple meanings, and even strong models can
generate incorrect names (e.g., GPT-4o renamed
ISI as Fire Spread Index instead of Initial Spread
Index). Further research is needed to refine this
strategy for effective QA pipeline integration.

6 Comparison with proprietary models

The integration of multiple components showcased
the potential of open-source LLMs for solving QA
tasks over tabular data. As Fig. 4 illustrates, we

Rank Codabench ID Team Score

1 xiongsishi TeleAI 95.02
2 pbujno SRPOL AIS 89.66
13 anotheroption anotheroption 80.08

baseline stable-code-3b-GGUF 26.00

Table 2: Official results among open source models

compared Codestral against GPT-4o (OpenAI et al.,
2024), both utilizing our pipeline. While GPT-4o
outperformed Codestral, the performance gap re-
mained within a reasonable range. However, the
best results were achieved by a two-model sys-
tem, which combined Codestral and Qwen Coder
for Python code generation, managed by an or-
chestrator. This setup reached 88% accuracy, sur-
passing GPT-4o. By leveraging an orchestrator to
optimize the strengths of multiple models, our ap-
proach demonstrates that open-source solutions can
achieve accuracy levels comparable to proprietary
models. Our pipeline applied to GPT4o (w/o or-
chestrator) also performs well (87%), resulting in
a noticeable improvement over a simpler pipeline,
showing the effectiveness of such an approach even
for already strong proprietary models.

7 Official results

We ranked in the top 13 out of 38 teams in the com-
petition’s OpenSource-models-only section (Osés-
Grijalba et al., 2025), achieving an accuracy score
of 80% on the Databench evaluation as well as
on a lite part of the benchmark. Our official re-
sults on Databench part of the task are presented
in Tab. 2, showing that we significantly outper-
formed the baseline by 54 points. The best solution
achieved a score of 95.20. In the global ranking
presented in Tab. 3, which includes proprietary
models, we placed in the top 20 out of 53 teams
while exclusively using open-source models.

8 Error Analysis

8.1 Orchestrator decisions

In Fig. 3, the distribution of orchestrator decision
types is shown. Most cases (63.4%) involved sim-
ple confirmation of consensus among identical out-
puts (’Agreement’). However, in 36.6% of sce-
narios, the orchestrator took a more active role:
filtering out logically flawed responses (14.6%),
rejecting answers with mismatched data formats
(12.2%), or resolving conflicts between divergent
yet seemingly valid outputs (9.8%).
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Figure 3: Distribution of LLM orchestrator decision
scenarios (based on 41 questions from the dev set).

8.2 Code-based solution failure analysis
Some code-based solutions had incorrect syntax.
There are several common patterns in which this
occurred.

• Incorrect aggregation: queries with broken
logical chains, incorrect applications of aggre-
gation functions or “group by” operation.

• Type unaware operations: the system would
often make syntax errors due to incorrect han-
dling, such as trying to retrieve properties over
int objects.

• Flawed code understanding: errors included
attempts to call Pandas methods with incorrect
or omitted arguments.

And when the code syntactically was correct,
there were several common failure patterns.

• Subtle logical errors: this often manifests syn-
tactically correct code that nonetheless em-
ploys incorrect aggregation, filtering, or sort-
ing logic for the specific dataset. Example:
Incorrect identification of the most retweeted
author due to flawed aggregation.

• Query misinterpretation: in these cases, the
generated code fails to capture the full intent
of the query. Example: Returning pokemon
name instead of total stats when asked for the

“lowest total stats of pokemon”.

• Data-specific edge cases: generated code
struggles with particular data characteristics,
such as incorrectly handling null values, emo-
jis, timestamps, or failing to provide a ro-
bust approach to tied rankings in sorting or
max/min operations. Example: Failure to cor-
rectly identify authors of shortest posts due to
inaccurate word count.

Identifying these distinct failure types is crucial
for improving the overall reliability of the Q&A
system.

8.3 Self-correction
The self-correction mechanism was largely ineffec-
tive due to the system design involving multiple
LLM agents: two for Python and two for SQL. In
the vast majority of cases, at least one Python and
one SQL agent a runnable solution. As a result,
the orchestrator could select a valid answer without
having to rely on self-correction.

9 Conclusion

We introduced a comprehensive system for QA
over tables, showcasing that well-orchestrated
open-source models can rival proprietary solutions.
We tested various methods: some risked errors,
while others improved accuracy and reliability of
the system. Our system ranked among the top
13 teams with 80% accuracy. Future work could
explore dynamic pipeline selection — automati-
cally determining whether a question requires code-
based execution, semantic analysis, or hybrid ap-
proaches — to optimize efficiency and accuracy.
Additionally, enhancing the orchestrator’s capacity
to detect and correct logical inconsistencies in can-
didate answers could further improve robustness.

10 Limitations

The performance of the system exhibits significant
variability across different model sizes. Addition-
ally, retrieval systems often encounter challenges
when the terms in a query do not align well with
the tabular data being searched, and embedding
models do not completely address this issue. A no-
table limitation lies in the generation of candidates
for orchestration, where it is possible for all gen-
erated responses to be incorrect. This represents a
well-known challenge, as identified in prior work
(Bradley, 2024), highlighting how certain tasks can
prove difficult even for comprehensive groups of
large language models (LLMs). In these instances,
the system is inherently designed without a mech-
anism to independently generate a correct answer.
Future research could explore potential strategies
to address such scenarios effectively.
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A Appendix

A.1 Checklists and Dialogue-Inducing
Prompts

During testing, models often skipped crucial in-
structions, leading to incorrect code generation.
To enhance reliability, we implemented checklist-
based prompts (Cook et al., 2024), enforcing con-
straints like type matching, entity verification, and
logical consistency for more accurate outputs. We
also tested dialogue-inducing prompts, where the
model simulated a specialist discussion to clarify
queries, but this proved superficial, as the model
did not actively use the dialogue to correct mis-
takes.

A.2 Few-shot Prompting
LLMs perform better with contextual examples
(Liu et al., 2022), a phenomenon often referred to
as few-shot prompting (Reynolds and McDonell,
2021; Brown et al., 2020). This approach involves
providing the model with a small number of task-
specific examples before asking it to perform the
desired task. We also experimented with dynamic
few-shot prompting (R, 2024), where the model
selects relevant examples based on their similarity
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Figure 4: GPT4o comparison with and w/o our pipeline. Llama3.3-70b-instruct used as orchestrator.

to the given question. However, this approach re-
quires generating a large number of high-quality
examples for each question type, which is both
labor-intensive and time-consuming. Additionally,
scaling this method could be challenging, as the
number of question types may become too large to
manage effectively. Due to these limitations, we
consider it beyond the scope of our current work.

Rank Codabench ID Team Accuracy

1 xiongsishi TeleAI 95.01
2 andreasevag AILS-NTUA 89.85

20 anotheroption anotheroption 80.08
baseline stable-code-3b-GGUF 26.00

Table 3: Results among both open and closed source
models

Statistic Value

Unique datasets 49
Avg. questions per dataset 20
Boolean answers (T/F) 65% / 35%
Avg. columns per question 2.47
Most common answer types

Category / Boolean 199 / 198
List[Num] / List[Cat] 198 / 197
Number 196

Columns per dataset (avg./std) 25.98 / 22.74
Question length (avg./std) 61.36 / 18.01

Table 4: Core statistics illustrating the distribution of
questions and answers in DataBench.

Data Questions and Formats

Data Type: Number
Q: What is the average age of our
employees?
Format: Single numerical value
(e.g., 35.2).

Data Type: List[Category]
Q: Unique classifications for em-
ployees’ education fields?
Format: List of categories (e.g.,
["Life Sciences", "Marketing"]).

Data Type: List[Number]
Q: Lowest 5 monthly incomes?
Format: List of numbers (e.g.,
[2000, 2100, 2200]).

Data Type: Category
Q: Most common role?
Format: Single category (e.g.,
"Manager").

Data Type: Boolean
Q: Is the highest DailyRate 1499?
Format: True or False.

Figure 5: Structured data questions and formats.
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prompt for python generation (dialogue)

1. You are two of the most esteemed Pandas DataScientists engaged in a heated
and truth-seeking debate. You are presented with a dataframe and a
question. Begin dialogue by rigorously discussing your reasoning step by
step, ensuring to address all aspects of the checklist. In your discourse,
meticulously articulate the variable type necessary to derive the answer
and confirm that each column referenced is indeed present in the
dataframe. Conclude your debate by providing the code to answer the
question, ensuring that the variable result is explicitly assigned to the
answer. Remember, all code must be presented in a single line, with
statements separated by semicolons.

2. Refrain from importing any additional libraries beyond pandas and numpy.
3. The dataframe, df, is already populated with data for your analysis; do

not initialize it, but focus solely on manipulating df to arrive at the
answer.

4. If the question requires multiple entries, always utilize .tolist() to
present the results.

5. If the question seeks a single entry, ensure that only one value is output
, even if multiple entries meet the criteria.

You MUST FOLLOW THE CHECKLIST, ANSWER EACH OF ITS QUESTIONS (REASONING STEP),
AND ONLY THEN OUTPUT THE FINAL ANSWER BASED ON THOSE ANSWERS:

1) How many values should be in the output?
2) Values (or one value) from which column (only one!) should the answer

consist of?
3) What should be the type of value in the answer?

Example of a task:
Question: Identify the top 3 departments with the most employees.
<Columns> = [’department’, ’employee_id’]
<First_row> = (’department’: ’HR’, ’employee_id’: 101)
Reasoning: Count the number of employees in each department, sort, and get

the top 3. The result should be a list of department names.
Checklist:
1) The output should consist of 3 values.
2) The values should come from the ’department’ column.
3) The type of value in the answer should be a list of strings.
Code: result = df[’department’].value_counts().nlargest(3).index.tolist()

Your data to process:
<question> = {question}

- Make absolute sure that all columns used in query are present in the table.
<columns_in_the_table> = {[col for col in df.columns]}
<first_rows_of_table> = {df.head(3).to_string()}
YOUR Reasoning through dialogue and Code (Start final code part by "Code:"):

Figure 6: Prompt for python generation (dialogue)
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prompt for python generation

1. You are a best in the field Pandas DataScientist. You are given a
dataframe and a question. You should spell out your reasoning step by
step and only then provide code to answer the question. In the reasoning
state it is essentianl to spell out the answers’ variable type that
should be sufficient to answer the question. Also spell out that each
column used is indeed presented in the table. In the end of your code the
variable result must be assigned to the answer to the question. One
trick: all code should be in one line separated by ; (semi-columns) but
it is no problem for you.

2. Avoid importing any additional libraries than pandas and numpy.
3. All data is already loaded into df dataframe for you, you MUST NOT

initialise it, rather present only manipulations on df to calculate the
answer.

4. If the question ask for several entries alsways use .tolist().
5. If the question ask for one entry, make sure to output only one, even if

multiple qualify.

<...> (same as previous prompt)

Figure 7: Prompt for python generation (without dialogue)

prompt for self-correction

"The following solutions failed for the task: \"{question}\"\n\n"
+ ’\n’.join([f’Solution {i+1} Error:\n{traceback}\n’ for i, traceback

in enumerate(tracebacks)])
+ "\nDF info: \n"
+ "<columns_to_use> = " + str([(col, str(df[col].dtype)) for col in

df.columns]) + "\n"
+ "<first_row_of_table> = " + str(df.head(1).to_dict(orient=’records

’)[0]) + "\n"
+ "YOUR answer in a single line of pandas code:\n"
+ "Please craft a new solution considering these tracebacks. Output

only fixed solution in one line:\n"

Figure 8: Prompt for self-correction
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prompt for orchestrator

Examples of deducing answer types:
1. If the question is "Do we have respondents who have shifted their voting

preference?" the answer type is **Boolean** because the response should
be True/False.

2. If the question is "How many respondents participated in the survey?" the
answer type is **Integer**

3. If the question is "List the respondents who preferred candidate X?" the
answer type is **List** because the response requires a collection of
values.

4. If the question is "What is the average age of respondents?" the answer
type is **Number** because the response should be a decimal value.

5. If the question is "What is the name of the candidate with the highest
votes?" the answer type is **String** because the response is a single
textual value.

Given the following solutions and their results for the task: "{question}"

{’ ’.join([f’Solution Number {i+1}: Code: {r["code"]} Answer: {str(r["
result"])[:50]} (may be truncated) ’ for i, r in enumerate(solutions)])}

Instructions:
- Deduce the most probable and logical result to answer the given question.

Then output the number of the chosen answer.
- If you are presented with end-to-end solution, it should not be trusted for

numerical questions, but it is okay for other questions.
- Make absolute sure that all columns used in solutions are present in the

table. SQL query may use additional double quotes around column names, it’
s okay, always put them. Real Tables columns are: {df.columns}

- If the column name contain emoji or unicode character make sure to also
include it in the column names in the query.

- If several solutions are correct, return the lowest number of the correct
solution.

- Otherwise, return the solution number that is most likely correct.
- If the question ask for one entry, make sure to output only one, even if

multiple qualify.

You should spell out your reasoning step by step and only then provide code
to answer the question. In the reasoning state it is essentianl to spell
out the answers’ variable type that should be sufficient to answer the
question. Also spell out that each column used is indeed presented in the
table. The most important part in your reasoning should be dedicated to
comparing answers(results) from models and deducing which result is the
most likely to be correct, then choose the model having this answer.

First, predict the answer type for the question. Then give your answer which
is just number of correct answer with predicted variable type. Start
reasoning part with "REASONING:" and final answer with "ANSWER:".

Figure 9: Prompt for orchestrator
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prompt for SQL generation

The task is: {question}
Here are some examples of SQL queries for similar tasks:
Example 1:
Task: Is there any entry where age is greater than 30?
REASONING:
1. Identify the column of interest, which is ’age’.
2. Determine the condition to check, which is ’age > 30’.
3. Use the SELECT statement to retrieve a boolean result indicating the

presence of such entries.
4. Apply the WHERE clause to filter rows based on the condition ’age > 30’.
5. Use the EXISTS clause to ensure the query outputs ’True’ if any row

matches the condition, otherwise ’False’.
6. Verify that the query outputs ’True’ or ’False’ when presented with a yes

or no question.
CODE: ‘‘‘SELECT CASE WHEN EXISTS(SELECT 1 FROM temp_table WHERE "age" > 30)

THEN ’True’ ELSE ’False’ END;‘‘‘
Example 2:
Task: Count the number of entries with a salary above 50000.
REASONING:
1. Identify the column of interest, which is ’salary’.
2. Determine the condition to filter the data, which is ’salary > 50000’.
3. Use the SELECT COUNT(*) statement to count the number of rows that meet

the condition.
4. Apply the WHERE clause to filter rows based on the condition ’salary >

50000’.
5. Ensure the table name is ’temp_table’ and the column name is enclosed in

double quotes to handle any spaces or special characters.
CODE: ‘‘‘SELECT COUNT(*) FROM temp_table WHERE [salary] > 50000;‘‘‘
Write a correct fault-proof SQL SELECT query that solves this precise task.
Rules:
- Your SQL query should be simple with just SELECT statement, without WITH

clauses.
- Your SQL query should output the answer, without a need to make any

intermediate calculations after its finish
- Make sure not to use "TOP" operation as it is not presented in SQLite
- If present with YES or NO question, Query MUST return ’True’ or ’False’
- If the question asks about several values, your query should return a list
- Equip each string literal into double quotes
- Use COALESCE( ..., 0) to answer with 0 if no rows are found and the

question asks for the number of something.
Table name is ’temp_table’.
Available columns and types: {’, ’.join([f"{col}: {str(type(df[col].iloc[0]))

}" for col in column_names])}
Top 3 rows with highest cosine similarity: {

get_relevant_rows_by_cosine_similarity(df, question, ai_client).head(3).
to_markdown()}

YOUR RESPONSE:

Figure 10: Prompt for SQL-generation
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prompt for E2E model

Question: {question}
Dataset: {dataset_text}

Analyze the data. Provide your final answer to the question based on the
data.
If the question assumes several answers, use a list. Your answer should
be in the form of one of the following:
1. Boolean (True/False)
2. List (e.g., [’Tree’, ’Stone’])
3. Number (e.g., 5)
4. String (e.g., ’Spanish’)

Give extensive reasoning and then fianlly provide the answer starting
with string "Final Answer:" in one of the four formats presented above (
Boolean, List, Number, String). Your response should then be finished.

Figure 11: Prompt for E2E model
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