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Abstract

This paper presents our approach to the
SemEval-2025 Task 6 (PromiseEval), which fo-
cuses on verifying promises in corporate ESG
(Environmental, Social, and Governance) re-
ports. We explore three model architectures to
address the four subtasks of promise identifi-
cation, supporting evidence assessment, clarity
evaluation, and verification timing. Our first
model utilizes ESG-BERT with task-specific
classifier heads, while our second model en-
hances this architecture with linguistic fea-
tures tailored for each subtask. Our third ap-
proach implements a combined subtask model
with attention-based sequence pooling, trans-
former representations augmented with docu-
ment metadata, and multi-objective learning.
Experiments on the English portion of the ML-
Promise dataset demonstrate progressive im-
provement across our models, with our com-
bined subtask approach achieving a leader-
board score of 0.5268, outperforming the pro-
vided baseline of 0.5227. Our work highlights
the effectiveness of linguistic feature extraction,
attention pooling, and multi-objective learning
in promise verification tasks, despite challenges
posed by class imbalance and limited training
data.

1 Introduction

The PromiseEval task at SemEval-2025 (Chen
et al., 2025) addresses the critical challenge of ver-
ifying promises in ESG (Environmental, Social,
and Governance) reports published by corporations
across multiple languages and industries. Corpo-
rate promises significantly influence stakeholder
trust and organizational reputation, yet their com-
plexity and volume make verification difficult. This
task breaks down promise verification into four es-
sential subtasks:

1. Promise Identification: Determining if a
statement contains a promise or not.

*Equal contribution.

2. Supporting Evidence Assessment: Verify-
ing if the promise has concrete evidence or
not.

3. Clarity of the Promise-Evidence Pair: Clas-
sifying the promise evidence as Clear, Not
Clear, or Misleading.

4. Timing for Verification: Categorizing when
promises should be verified within 2 years, 2-
5 years, beyond 5 years, or other.

All of the code used in the implementation of the
models described in this paper is made available
on GitHub1.

2 Background

The PromiseEval task at SemEval-2025 builds
upon the ML-Promise dataset introduced by (Seki
et al., 2024), the first multilingual resource for
promise verification in corporate ESG communica-
tions. For our experiments, we focused exclusively
on the English portion containing 400 training in-
stances labelled for each of the four classification
subtasks.

As shown in Figure 1, the dataset exhibits class
imbalance across all four subtasks, creating chal-
lenges for model development. Our work ex-
plores effective model architectures, with a par-
ticular focus on linguistic feature extraction and
multi-objective learning with contextual enrich-
ment. The combined subtask model addresses these
challenges through attention-based sequence pool-
ing, transformer representations augmented with
document metadata, and a training methodology
incorporating focal loss and test-time augmenta-
tion to improve performance on imbalanced classes
while maintaining computational efficiency.

1https://github.com/CLaC-Lab/
SemEval-2025-Task6
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Figure 1: Class distribution across four subtasks in the
English portion of the SemEval-2025 Task 6 dataset.

3 Related Work

Our work builds upon several interconnected ar-
eas in Natural Language Processing (NLP) and
ESG text analysis. This section outlines prior work
related to our approach and contextualizes our con-
tributions.

3.1 ESG Text Analysis

The computational analysis of Environmental, So-
cial, and Governance (ESG) disclosures has re-
ceived growing attention in recent years. Armbrust
et al. (2020) developed a framework for analyzing
corporate sustainability reports using NLP tech-
niques, identifying key sustainability themes and
measuring their prevalence across sectors. Sim-
ilarly, Bingler et al. (2021) examined the phe-
nomenon of “green-washing” in corporate climate
pledges, highlighting inconsistencies between com-
mitments and actions. The development of domain-
specific language models has been particularly
important for ESG text analysis. Mukherjee and
Pothireddi (2021) introduced ESG-BERT, which
we employ in our Base and Feature-Enhanced mod-
els (see Sections 4.1 and 4.2).

3.2 Multi-Task Learning in NLP

Our Combined Subtask Model (see Section 4.3)
incorporates multi-task learning principles, which
have shown their effectiveness in related NLP chal-
lenges. Liu et al. (2019) demonstrated that multi-
task learning improves performance across various
NLP tasks by enabling knowledge transfer between
related classification objectives. Similarly, Chen
et al. (2024) provided a comprehensive overview
of multi-task learning approaches in NLP, high-
lighting the benefits of shared representations for
related tasks.

In the financial domain, Yang et al. (2021) em-
ployed multi-task learning for analyzing financial
documents, jointly modelling document classifi-
cation and named entity recognition tasks with a
shared encoder. Their approach demonstrated per-
formance improvements similar to our findings re-
garding joint promise and evidence detection.

3.3 Attention Mechanisms and Feature
Engineering

The attention pooling mechanism implemented in
our Combined Subtask Model (see Section 4.3)
draws inspiration from work by Yang et al. (2016)
on hierarchical attention networks for document
classification. Their approach demonstrated the
effectiveness of attention mechanisms for focusing
on relevant parts of documents, particularly for
long texts like the corporate reports in our dataset.
For linguistic feature engineering, our approach
builds on work by Prabhakaran et al. (2016) who
used linguistic markers to identify commitment
language in political discourse.

3.4 Class Imbalance in Text Classification

Class imbalance has been addressed by several re-
searchers. Johnson and Khoshgoftaar (2019) pro-
vided a comprehensive survey of techniques for
handling imbalanced data in machine learning, sev-
eral of which we incorporated in our approach.
More specific to NLP, Henning et al. (2023) ex-
plored techniques for addressing class imbalance
in transformer-based text classification, demonstrat-
ing that appropriate loss functions and sampling
strategies can significantly improve performance
for minority classes.

Our test-time augmentation approach (see Sec-
tion 4.3) draws on work by Shanmugam et al.
(2021), who demonstrated that augmented infer-
ence can improve classification performance, par-
ticularly in challenging examples.

4 System Overview

Our system explores three different model architec-
tures, as illustrated in Figure 2.

Model 1: a baseline architecture with ESG-
BERT and task-specific classifier heads pro-
cessing the given text inputs as is.

Model 2: a feature-enhanced ESG-BERT model
incorporating linguistic features tailored for
each subtask.
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Model 3: a combined subtask model that inte-
grates a multi-objective architecture for sub-
tasks 1 and 2, and uses attention pooling with
a shared transformer backbone for better fea-
ture extraction.

4.1 Model 1: Base Model Architecture
Our Base Model consisted of the pre-trained ESG-
BERT (Mukherjee and Pothireddi, 2021) model
with four subtask-specific classifier heads. We
trained four distinct models, one for each subtask
in the promise verification pipeline. ESG-BERT
was selected for all subtasks to leverage its domain-
specific knowledge of environmental, social, and
governance terminology, which closely aligns with
the content of corporate promise statements. To op-
timize training efficiency while maintaining model
performance with our limited dataset of 400 in-
stances, we froze the ESG-BERT’s model param-
eters and only fine-tuned the last 2 transformer
layers along with the classification heads. This ap-
proach significantly reduced computational require-
ments and potentially helped prevent overfitting.

4.2 Model 2: Feature-Enhanced Model
For our second architecture, we enhanced the Base
ESG-BERT model with explicit linguistic features
tailored to each subtask. We made the assumption
that prepending task-specific feature tags to the
input text would improve model performance by
signalling important linguistic patterns that might
otherwise require many training examples to learn.

Subtask 1 – Promise Identification: We gener-
ated a list of promise-related terms (e.g., “commit”,
“pledge”, “goal”) and prepended the presence of
one of these (stemmed) terms to the input. In ad-
dition, we included the sentiment polarity of the
input, based on the hypothesis that promises are
typically expressed positively. For example, given
the original text:
We commit to achieving net-zero emissions across

our entire supply chain by 2040

Model 2 would transform it to:
POSITIVE Sentiment. Contains Promise Word. We

commit to achieving net-zero emissions across our

entire supply chain by 2040

Subtask 2 – Evidence Detection: We developed
two sets of terms for concrete metrics (e.g., “per-
centage”, “dollars”) and supporting evidence (e.g.,
“document”). We then prepended feature tags in-
dicating the count of these terms and the presence

of numbers and dates detected via named entity
recognition (NER) models, as in:
Proof_Count_2. Has_Numbers. Our carbon emissions

decreased by 15%, as stated in our sustainability

report and confirmed through third-party audit

Subtask 3 – Clarity Assessment: We crafted
two tailored lists of vague terms signalling eva-
sive language, and of terms indicating clear lan-
guage. We counted occurrences and prepended
these counts to the texts. For example:
Vague_Terms_2. Specific_Terms_0. We might

consider implementing sustainability initiatives

Subtask 4 – Timing for Verification: We devel-
oped lists of time-related terms for four verification
timeframes (e.g., 2-5 years, more than 5 years),
extracted dates using NER, and prepended this in-
formation.

4.3 Model 3: Combined Subtask Model
For our third model, we implemented a multitask
learning framework, specifically focusing on Sub-
tasks 1 and 2. The core of our system is built on the
DeBERTa-v3-large transformer model (He et al.,
2021), with several architectural additions:

Attention Pooling: Instead of relying on the
standard [CLS] token representation, we imple-
mented attention pooling to dynamically weight
token representations across the sequence, allow-
ing the model to better focus on relevant textual
elements:

αi = softmax(Wattnhi) (1)

r =

n∑

i=1

αihi (2)

where hi represents hidden states and Wattn is a
learnable parameter, and r is the final representa-
tion of the input.

Dual Task-Specific Heads: We designed paral-
lel classification pathways for promise (Subtask 1)
and evidence (Subtask 2) detection with identical
architectures consisting of sequential layers:

Classifier(x) = W2GELU(LN(Dropout(W1x))) (3)

Each classifier employs layer normalization for
training stability, dropout for regularization, and
GELU activation functions for improved gradient
flow.
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Figure 2: System architecture of the three Promise Verification models.

Context-Enriched Representation: We incor-
porated document metadata directly into text repre-
sentations by prepending structural markers:

xenriched = "[PAGE p] [ESG REPORT] " + xraw

(4)
Here, [PAGE p] is dynamically set based on

the page number of the input document, and the
document-type tag ([ESG REPORT]) can vary de-
pending on the report source, allowing the model
to distinguish between different document types.

Multi-objective Weighting: The combined train-
ing objective weights the promise and evidence sub-
tasks differently to prioritize the more foundational
promise detection task:

L = 0.6 · Lpromise + 0.4 · Levidence (5)

Test-Time Augmentation: For prediction, we
implemented multiple forward passes with differ-
ent text augmentations, averaged the probabilities
across ensemble predictions, and calibrated thresh-
olds for final binary decisions.

5 Experimental Setup

5.1 Models 1 & 2: Cross-Validation and
Feature-Enhanced Training

For Models 1 and 2, we implemented a 4-fold strati-
fied cross-validation approach for data splitting dur-
ing hyperparameter tuning for each subtask. The

English dataset was divided using the Stratified-
KFold class from the scikit-learn library2, main-
taining class distribution across folds to address
class imbalance. For each trial, the data was par-
titioned with 75% used for training and 25% for
validation. Validation loss was the sole optimiza-
tion metric, averaged across all 4 folds for each of
the 7 trials per subtask. We maintained consistent
random seeds throughout all experiments to ensure
reproducibility.

For Model 2, our preprocessing approach var-
ied by subtask, with each designed to extract task-
specific linguistic features. For promise identifica-
tion, we used sentiment analysis through the Flair
package (Akbik et al., 2019) and promise word de-
tection. For evidence identification, we counted
concrete metrics and supporting proof terms while
detecting named entities using spaCy3. For clarity
assessment, we analyzed the prevalence of vague
versus specific terminology. For the timing for ver-
ification, we extracted dates and identified timeline
indicators. All enriched features were prepended
to the original text as specialized tags before tok-
enization.

Hyperparameter optimization was performed us-
ing Optuna with the TPE sampler. We tuned the
learning rate (1e-5 to 5e-5), batch size (4, 8, 12),

2https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.
StratifiedKFold.html

3https://spacy.io/
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and weight decay (0.01 to 0.3). We used early stop-
ping with a patience of 2 epochs to prevent overfit-
ting. For model architecture, we fine-tuned only the
last two transformer layers and the classification
head while freezing earlier layers. After determin-
ing optimal hyperparameters, the final model for
each subtask was trained on the entire dataset.

5.2 Model 3: Multi-Task Learning Setup

For Model 3, we adopted a different experimen-
tal approach to leverage the multi-task learning
paradigm. We divided the English dataset using
stratified sampling with a 90-10 train-validation
split, ensuring a balanced representation of both
promise and evidence classes. This larger train-
ing proportion was selected to provide sufficient
examples for the joint learning task. The model
was trained with a learning rate of 1e-5, weight
decay of 0.01, and a cosine learning rate sched-
uler with 10% warmup steps. To accommodate
memory constraints while maintaining effective
batch sizes, we implemented gradient accumula-
tion with 16 steps and reduced sequence length
to 256 tokens. Training proceeded for 5 epochs
with evaluation on a held-out validation set after
each epoch, with the best checkpoint saved based
on the average F1 score across both tasks. For infer-
ence, we employed test-time augmentation (Shan-
mugam et al., 2021) with 3 forward passes using
random word dropout (10%) and metadata varia-
tions, then ensemble-averaged the predictions with
calibrated thresholds (0.5) for final classification.

6 Results and Discussions

Table 1 presents the performance of our three mod-
els on both public and private leaderboards. The
public leaderboard score is computed using approx-
imately 33% of the test set, while the private leader-
board score determines the final standings based
on the remaining 67%.

Since the Combined Model only worked on
Tasks 1 and 2, and Kaggle required all four sub-
tasks for evaluation, we incorporated Task 1 and 2
predictions from our Combined Model while using
our Feature-Enhanced Model for Tasks 3 and 4.

The private scores show improvement across our
models. Starting with the Base Model (0.4994), we
achieved better results with the Feature-Enhanced
Model (0.5094), and our Combined Subtask Model
reached 0.5268, surpassing the Kaggle Baseline
(0.5227). While the improvements are modest, they

suggest our architectural changes and feature engi-
neering methods are effective for promise verifica-
tion tasks.

Model Public Score Private Score

Kaggle Baseline 0.5523 0.5227
Base Model 0.5082 0.4994
Feature-Enhanced Model 0.5137 0.5094
Combined Subtask Model 0.5255 0.5268

Table 1: Performance of our models on the SemEval-
2025 Task 6 leaderboard compared to the Kaggle base-
line. The public score is calculated using 33% of the test
set, while the private score reflects the final evaluation
based on 67% of the test set.

Our Base Model and the Feature-Enhanced
Model show a slight improvement of approximately
0.010 on the private leaderboard (from 0.4994
to 0.5094). Our minimal improvements in per-
formance likely stem from ESG-BERT already
implicitly capturing many of these patterns dur-
ing domain-specific pre-training, creating a redun-
dancy effect. Additionally, our prepending ap-
proach may have created a structural disconnect
between features and relevant text spans, while the
limited training data (400 instances) constrained
the model’s ability to learn optimal weightings for
the introduced features.

The Combined Subtask Model yields the largest
gain, achieving 0.5268, a 1.74% absolute improve-
ment over the baseline. We attribute this improve-
ment to three factors: (1) multitask learning bene-
fits from shared representations between promise
and evidence detection, (2) attention pooling al-
lows the model to focus on semantically relevant
tokens dynamically, and (3) test-time augmentation
reduces variance in prediction by ensembling mul-
tiple augmentations. However, despite achieving
our highest score, the Combined Subtask Model
showed only modest gains relative to its substan-
tially increased architectural complexity and com-
putational requirements. The limited size of our
training dataset (400 instances) may have prevented
the model from fully leveraging its advanced com-
ponents like attention pooling and multi-objective
learning, while the potential negative transfer be-
tween promise and evidence tasks may have con-
strained performance gains for instances where
these classifications require contradictory feature
attention.
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7 Conclusion

Our work explored three model architectures for
promise verification in ESG reports: a baseline
ESG-BERT model, a feature-enhanced model in-
corporating linguistic markers, and a combined sub-
task model with attention pooling. The combined
model achieved the best performance (0.5268 on
the private leaderboard), outperforming the Kag-
gle baseline. Despite the challenge of class imbal-
ance across all four subtasks, our linguistic feature
extraction approach and multi-objective learning
framework demonstrated effectiveness in promise
verification with limited training data.

Future work could explore incorporating cross-
lingual promise verification through multilingual
transformer models, integrating more advanced lin-
guistic pattern recognition, and incorporating all
classification tasks within a single multi-objective
architecture to better capture interdependencies be-
tween promise identification, evidence assessment,
clarity evaluation, and verification timing. Addi-
tionally, a systematic ablation study could quantify
the contribution of each backbone pre-trained lan-
guage model (PLM), such as BERT and RoBERTa,
and each feature strategy (e.g., linguistic features,
document metadata).
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