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Abstract

This paper presents our approach for
SemEval-2025 Task 1, Advancing Multimodal
Idiomaticity Representation (AdMIRe),
which focuses on idiom image ranking via
semantic similarity. We explore multiple
strategies, including neural networks on
extracted embeddings. A key component of
our methodology is the application of ad-
vanced prompt engineering techniques within
multimodal in-context learning (ManyICL),
leveraging GPT-4o, CLIP. Our experiments
demonstrate that structured and optimized
prompts significantly enhance the model’s
ability to interpret idiomatic expressions in a
multimodal setting. The source code used in
this paper is available at github.1

1 Introduction

Identifying and understanding idioms remain sig-
nificant challenges large language models (LLMs)
(Donthi et al., 2025). An idiom typically consists
of multiple words, and its meaning is deeply rooted
in cultural and historical contexts, making it impos-
sible to derive solely from the meanings of its indi-
vidual components (Dankers et al., 2022). Idioms
often exhibit entirely different literal and figurative
meanings.

Large Language Models (LLMs) has exhibited
remarkable emergent abilities, typically includ-
ing instruction following (Peng et al., 2023), In-
Context Learning (ICL) (Brown et al., 2020), and
Chain of Thought (CoT) (Wei et al., 2023). Whilist
Large Vision Models (LVMs) possess strong visual
perception capabilities but often lag in reasoning
abilities (Shen et al., 2023). Instruction-tuning re-
quires a large amount of task-specific data (Gu
et al., 2023). GPT-4 (OpenAI, 2023).

Recent studies have shown that in-context learn-
ing (ICL) capabilities of language models can be

1https://github.com/cicl-iscl/SemEval_2025_T
ask1_Jiaong_Ruitong_Yue

effectively applied to vision-language-generating
models. The advancement has significantly im-
proved AI’s ability to integrate visual and textual
information. Models such as CLIP (Radford et al.,
2021) have laid the foundation for modern MLLMs,
leveraging large-scale parameterization and multi-
modal instruction tuning to enhance versatility.

ICL enables models to learn from few-shot ex-
amples within the input context without requiring
parameter updates (Yang et al., 2023). Compared
to fine-tuning, which demands significant compu-
tational resources and extensive task-specific data
(Yin et al., 2024), few-shot ICL is more efficient,
requiring minimal data while maintaining adapt-
ability across different contexts.

CLIP (Radford et al., 2021) have shown excel-
lent generalization ability to downstream tasks.
This capability highlights the its potential in un-
derstanding compositional semantics. Studies
have shown that designing high-quality contextual
prompts can significantly enhance the performance
of CLIP and other vision-language models (Jin
et al., 2022)

Our methodology integrates advanced prompt
engineering within multimodal in-context learning,
leveraging Chain-of-Thought reasoning and self-
consistency prompting. We classify idioms into lit-
eral and idiomatic cases using GPT-4o, then apply
tailored textual and visual prompts for each cate-
gory. For literal idioms, GPT-4o generates descrip-
tive explanations, which are compared to images
via CLIP for ranking. For idiomatic expressions,
we employ Colorful Prompt Tuning (CPT) to en-
hance image interpretability before prompting GPT
to rank them. Our approach also explores struc-
tured prompt design and annotation techniques,
such as red-boxed visual cues, to improve model
alignment and reasoning in multimodal tasks.
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2 Data

The dataset used in this study is derived from a
provided TSV (tab-separated values) and a col-
lection of images corresponding to each idiom.
The TSV file contains columns including com-
pound (the idiom), subset (Train or Sample, Test,
Dev), sentence_type (idiomatic or literal), sen-
tence (a contextual sentence using the idiom), ex-
pected_order (the anticipated ranking of images,
only provided in training dataset), and five pairs of
image filenames and captions (e.g., image1_name,
image1_caption).2

Each idiom in the dataset is associated with five
images that need to be ranked based on their rel-
evance to the idiom’s interpretation. The training
data also includes a Sample subset with 10 exam-
ples for initial exploration.

The images represent different levels of id-
iomaticity:

• A synonym for the idiomatic meaning.

• A synonym for the literal meaning.

• An image related to the idiomatic meaning but
not synonymous.

• An image related to the literal meaning but
not synonymous.

• A distractor image that is thematically related
to the compound but unrelated to both mean-
ings.

3 Methodology

One of our main objectives was to integrate ad-
vanced prompt engineering within multimodal in-
context learning. Drawing inspiration from Chain-
of-Thought (CoT) and Vision instruction prompt-
ing, we developed structured prompts to help guide
the model’s reasoning process.

A study by Yang et al. (2022) on prompt tuning
in generative multimodal models examined how
different configurations impact performance. The
findings suggested that while longer prompts with
more parameters generally enhance results, the im-
provements plateau over time, and excessively long
prompts can even degrade performance.

For our experiments, we used the SemEval-2025
Task 11 dataset to evaluate different prompt engi-
neering strategies, focusing on ranking accuracy

2https://semeval2025-task1.github.io/

as provided by the competition organizers3. Our
approach incorporated both Chain-of-Thought rea-
soning and self-consistency prompting. Before div-
ing into the ranking task, we first used GPT-4o as
a classifier to distinguish between literal and id-
iomatic uses of idioms. Based on this classification,
we then designed both textual and visual prompts to
suit each category. For literal idioms, we had GPT-
4o generate precise descriptions of their meanings,
which were then compared to the images using
CLIP. The five given images were ranked accord-
ing to their similarity scores with these descrip-
tions. For idiomatic expressions, instead of directly
processing the text, we applied Colorful Prompt
Tuning (CPT) to modify the images, making them
more interpretable for large language models. With
these enhanced visuals, GPT was then prompted
to rank the images accordingly. A detailed break-
down of our methodology for handling literal and
idiomatic idioms can be found in Sections 5.1.1
and 5.1.2.

3.0.1 Literal compounds processing
Text prompt designing We leveraged GPT-4o as
an expert model to rephrase idioms into descriptive
explanations based on their context within given
sentences. This transformation aimed to make id-
iomatic expressions more interpretable for CLIP,
enhancing its ability to grasp their meaning in mul-
timodal tasks. To achieve this, we carefully de-
signed text prompts that guided GPT to generate
precise, context-aware explanations, ensuring that
CLIP could associate images with their intended
meanings more effectively.

As shown in Figure 3, the first prompt exhib-
ited inconsistencies in the generated descriptions,
which were sometimes excessively long or too brief.
Additionally, despite the idiom being used liter-
ally in the given sentence, the description occasion-
ally retained an idiomatic interpretation.The second
prompt addressed these issues by imposing a word
limit and explicitly requiring the model to generate
a strictly literal interpretation when encountering
literal idioms. Although one or two cases still re-
sulted in idiomatic descriptions, the overall quality
and accuracy of the generated explanations were
significantly improved.The third prompt, despite
providing two examples, consistently produced id-
iomatic interpretations even for idioms that were

3https://www.codabench.org/competitions/4345/#/results-
tab
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Figure 1: overview of our system framework

Figure 2: Few-Shot Learning output result: [5, 4, 3, 1, 2] Golden Truth: [5, 4, 3, 1, 2]

supposed to be literal. As a result, we ultimately
selected the second prompt as the most effective
approach.

4 Limitation

4.0.1 Idiomatic compounds processing

Visual prompt designing Colorful Prompt Tuning
introduced in Yao et al. (2022), focuses on coloriz-
ing specific regions of images as visual prompts.
By incorporating color cues, the model is guided
to ground objects and better understand the visual
context. Shtedritski et al. (2023) explores the use
of annotations, such as red circles, as an innova-
tive visual prompting design. These annotations
serve as cues to guide the model’s attention toward
specific areas of interest, thereby enhancing its un-

derstanding of images. As illustrated in Figure 2,
red boxes are used to delineate the boundaries of
each image, and each image is labeled with a red
number to facilitate differentiation. Additionally,
we employ a combination of few-shot learning,
Chain-of-Thought and self-consistency prompting
to guide GPT’s reasoning process.

4.1 Results and Evaluation

Our experiments showed that integrating advanced
prompt engineering significantly improved perfor-
mance across different evaluation metrics. We eval-
uated zero-shot, few-shot, and CoT-based prompt-
ing strategies to measure their effectiveness.

Experimental results indicate that simple zero-
shot prompts performed poorly, as idiomatic ex-
pressions require implicit knowledge. Few-shot
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Figure 3: Three examples of generating literal compounds

Table 1: Evaluation results on the development dataset
(English).

Metric Accuracy Score

Overall Accuracy 0.7333 –
Literal Accuracy 0.875 –
Idiomatic Accuracy 0.5714 –
Overall Rank Correlation – 0.2867
Literal Rank Correlation – 0.3875
Idiomatic Rank Correlation – 0.1714
Overall DCG Score – 3.1427
Literal DCG Score – 3.3715
Idiomatic DCG Score – 2.8813

learning combined with CoT significantly im-
proved results by providing contextual examples,
enabling better model understanding. Especially
when using CLIP to rank images, an accurate de-
scription of the idiom performed better than the
idiom itself in conveying meaning.

To evaluate our approach on the SemEval-2025
Task 1 dataset, we follow the evaluation criteria es-
tablished by the organizers, using multiple ranking
metrics for model performance:
Top-1 Accuracy: The proportion of test cases
where the model correctly identifies the most rep-
resentative image.
Rank Correlation (Spearman’s ρ): Measures the
agreement between the model’s ranking and the
ground truth ranking.

Table 2: Evaluation results on the test dataset (English).

Metric Accuracy Score

Overall Accuracy 0.6667 –
Literal Accuracy 0.7143 –
Idiomatic Accuracy 0.6250 –
Overall Rank Correlation – 0.2400
Literal Rank Correlation – 0.2857
Idiomatic Rank Correlation – 0.2000
Overall DCG Score – 3.1168
Literal DCG Score – 3.1950
Idiomatic DCG Score – 3.0484

Discounted Cumulative Gain (DCG): Evaluates
ranking quality by assigning higher importance to
correctly ranked top images (Pickard et al., 2025).

Our model achieved an accuracy of 67% in
test dataset (Table 2) and 73% in development
dataset(Table 1), indicating that it correctly identi-
fied the most representative image in the majority
of test cases.

We observe that our model performed better on
literal expressions compared to idiomatic ones. The
model had more difficulty with idiomatic ones due
to its complex semantics features.

Prompt engineering lacks interpretability, mak-
ing it difficult to determine which aspects influence
the model’s multimodal alignment. Future work
could explore these connections further, enabling
more efficient experimentation. Also exploring
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integrating automatic prompt engineering (APE)
techniques and fine-tuning VLMs for a better inter-
pretability.
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Çağrı Çöltekin for his valuable guidance and sup-
port.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Verna Dankers, Christopher Lucas, and Ivan Titov. 2022.
Can transformer be too compositional? analysing id-
iom processing in neural machine translation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3608–3626, Dublin, Ireland. As-
sociation for Computational Linguistics.

Sundesh Donthi, Maximilian Spencer, Om B. Patel,
Joon Young Doh, Eid Rodan, Kevin Zhu, and Sean
O’Brien. 2025. Improving LLM abilities in idiomatic
translation. In Proceedings of the First Workshop
on Language Models for Low-Resource Languages,
pages 175–181, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Jindong Gu, Zhen Han, Shuo Chen, Ahmad Beirami,
Bailan He, Gengyuan Zhang, Ruotong Liao, Yao Qin,
Volker Tresp, and Philip Torr. 2023. A systematic
survey of prompt engineering on vision-language
foundation models.

Woojeong Jin, Yu Cheng, Yelong Shen, Weizhu Chen,
and Xiang Ren. 2022. A good prompt is worth
millions of parameters: Low-resource prompt-based
learning for vision-language models.

Feng Li, Qing Jiang, Hao Zhang, Tianhe Ren, Shilong
Liu, Xueyan Zou, Huaizhe Xu, Hongyang Li, Chun-
yuan Li, Jianwei Yang, Lei Zhang, and Jianfeng Gao.
2023. Visual in-context prompting.

OpenAI. 2023. Chatgpt. Accessed: 2023-07-22.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4.

Thomas Pickard, Aline Villavicencio, Maggie Mi, Wei
He, Dylan Phelps, Carolina Scarton, and Marco Idiart.
2025. Semeval-2025 task 1: Admire – advancing
multimodal idiomaticity representation.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision.

Yunhang Shen, Chaoyou Fu, Peixian Chen, Mengdan
Zhang, Ke Li, Xing Sun, Yunsheng Wu, Shaohui
Lin, and Rongrong Ji. 2023. Aligning and prompting
everything all at once for universal visual perception.

Aleksandar Shtedritski, Christian Rupprecht, and An-
drea Vedaldi. 2023. What does CLIP know about a
red circle? visual prompt engineering for VLMs.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Hao Yang, Junyang Lin, An Yang, Peng Wang, Chang
Zhou, and Hongxia Yang. 2022. Prompt tuning for
generative multimodal pretrained models.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. 2023. MM-
REACT: Prompting ChatGPT for multimodal reason-
ing and action.

Yuan Yao, Ao Zhang, Zhengyan Zhang, Zhiyuan Liu,
Tat-Seng Chua, and Maosong Sun. 2022. Cpt: Col-
orful prompt tuning for pre-trained vision-language
models.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing
Sun, Tong Xu, and Enhong Chen. 2024. A survey on
multimodal large language models. National Science
Review, 11(12).

Ziheng Zeng and Suma Bhat. 2021. Idiomatic ex-
pression identification using semantic compatibility.
Transactions of the Association for Computational
Linguistics, 9:1546–1562.

Yifei Zhang, Bo Pan, Siyi Gu, Guangji Bai, Meikang
Qiu, Xiaofeng Yang, and Liang Zhao. 2024. Vi-
sual attention prompted prediction and learning. In
Proceedings of the Thirty-ThirdInternational Joint
Conference on Artificial Intelligence, IJCAI-2024,
page 5517–5525. International Joint Conferences on
Artificial Intelligence Organization.

A More Analysis

In our analysis, we evaluate the impact of contex-
tual embeddings on the understanding of idiomatic
expressions. To further investigate the effectiveness
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of different models, we employ a simple neural net-
work to compute the similarity between text and
image embeddings.

A.1 Text-Image Similarity via Neural
Network

To quantify the alignment between text and image
embeddings, we use a lightweight neural network
model. Given a text embedding T and an image em-
bedding I, the model computes a similarity score
S as follows:

S = σ(W[T⊕ I] + b) (1)

where:

• σ is the sigmoid activation function,

• W and b are trainable weight and bias param-
eters,

• ⊕ represents the concatenation operation.

The network outputs a probability score S, indi-
cating the degree of alignment between the textual
and visual representations.

A.2 Ranking Images Based on Similarity
Using the computed similarity scores, we rank im-
ages based on their alignment with the given textual
description:

1. Compute similarity scores Si for all candidate
images.

2. Apply softmax normalization:

Pi =
eSi

∑
j e

Sj
(2)

3. Rank images by descending Pi.

This ranking approach offers a structured way
to evaluate embeddings from different models. As
shown in Figure 4, multimodal models achieve bet-
ter text-image alignment, while contextual embed-
dings improve idiom interpretation over isolated
embeddings.

To further explore these findings, we compared
text embeddings from bert-base-uncased, clip-vit-
large-patch14, and DISC (Zeng and Bhat, 2021).
The baseline uses embeddings from bert-base-
uncased without context, whereas other models
generate contextual embeddings from entire sen-
tences.

This analysis assesses the impact of contextual
information on compound interpretation, particu-
larly for idioms. To ensure consistency, we fixed
image embeddings across all models using clip-vit-
large-patch14 and examined their alignment with
textual embeddings (Figure 4).

Results show that multimodal models yield the
highest alignment, reinforcing the value of visual
context. Contextual embeddings outperform iso-
lated embeddings, indicating the importance of sur-
rounding text. Notably, disc surpasses bert-base-
uncased by 1.17% in idiom understanding, high-
lighting the benefits of contextualization. However,
overall performance remains suboptimal, motivat-
ing further exploration of alternative approaches.

Figure 4: Alignment between text embeddings and im-
age embeddings based on the training dataset

B Processed Image Examples

In this appendix, we present figures 5 6 of images
processed using the visual in-context prompting ap-
proach. This technique improves vision reasoning
(Li et al., 2023) (Zhang et al., 2024).

Figure 5: Dirty Money

Figure 6: Elbow Grease
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