Team Cantharellus at SemEval-2025 Task 3: Hallucination Span Detection
with Fine-Tuning on Weakly Supervised Synthetic Data

Xinyuan Mo and Nikolay Vorontsov and Tiankai Zang *
University of Helsinki
{xinyuan.mo, nikolay.vorontsov, tiankai.zang}@helsinki.fi

Abstract

This paper describes our submission to
SemEval-2025 Task-3: Mu-SHROOM, the
Multilingual Shared-task on Hallucinations and
Related Observable Overgeneration Mistakes,
which mainly aims at detecting spans of LLM-
generated text corresponding to hallucinations
in multilingual and multi-model context. We
explored an approach of fine-tuning pretrained
language models available on Hugging Face.
The results show that predictions made by a
pretrained model fine-tuned on synthetic data
achieve a relatively high degree of alignment
with human-generated labels. We participated
in 13 out of 14 available languages and reached
an average ranking of 10th out of 41 participat-
ing teams, with our highest ranking reaching
the top 5 place.

1 Introduction

Recent years have witnessed the rapid development
of large language models (LLMs) and their applica-
tions in various fields of natural language process-
ing (Wei et al., 2022; Zhao et al., 2023). However,
content generated by LLMs occasionally contains
inaccurate or fictitious information (Perkovic et al.,
2024). The phenomenon in which natural language
generation models often generate text that is non-
sensical, or unfaithful to the provided source in-
put is commonly referred to as “hallucinations” (Ji
et al., 2023). It is therefore a vital task to detect and
identify hallucinated content so as to improve the
reliability and trustworthiness of LLM-generated
content.

SemEval 2025 Task 3 (Mu-SHROOM, the Multi-
lingual Shared-task on Hallucinations and Related
Observable Overgeneration Mistakes) (Vazquez
et al., 2025) proposes the task of detecting halluci-
nation in content generated with LLMs. Different
from the previous iteration, SemEval-2024 Task
6 (Mickus et al., 2024), in which the participants

* Equal contribution, authors are listed alphabetically.

were asked to make binary decisions of whether
a given context contains hallucination, the current
task requires the participants to predict where the
hallucinations occur. Specifically, the current task
requires the participants to predict the spans of the
hallucinated content within LLM outputs in 14 dif-
ferent languages.

As is shown in the results of the previous itera-
tion of this task (Mickus et al., 2024), it is effective
to fine-tune pretrained language model for hallu-
cination detection. We therefore further extended
this approach from performing binary classifica-
tion tasks to predict the spans of hallucinations.
We explored fine-tuning a series of Transformer-
based pretrained language models (Vaswani et al.,
2017), including text-to-text Transformer models
(Raffel et al., 2020) and BERT-based models (De-
vlin, 2018), with training data created by ourselves.

Building on this method, we developed the sys-
tem based and participated in 13 out of 14 lan-
guages. In addition, we also applied the approach
of named entity recognition (NER) as a baseline in
order to provide a more comprehensive evaluation
of our system’s performance. We have released our
code and other relevant material on GitHub '.

2 Background

Hallucination detection has been an extensively
researched topic in recent years. One promising
solution for hallucination detection is to utilize the
self-evaluation ability of LLMs to judge the factual
correctness of a given statement, leveraging the fact
that LLMs have possessed a rich knowledge base
(Li et al., 2024; Zhang et al., 2024). Many existing
studies focus on the binary classification of hallu-
cination. For instance, SelfCheckGPT (Manakul
et al., 2023) is built on the idea that when an LLM
is familiar with a particular concept, the responses
it generates are likely to be consistent and con-

"https://github.com/nicksnlp/Cantharellus.git

1724

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1724-1736
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

tain similar facts. In the HaluEval 2.0 benchmark
(Li et al., 2024), the hallucination detection ap-
proach is built by first extracting factual statements
from LLM responses, then determining the trust-
fulness of these statements with respect to world
knowledge by taking advantage of the vast knowl-
edge base of LLMs. Similarly, MIND (Su et al.,
2024) introduces a similar approach that leverages
the internal states of LLMs for real-time halluci-
nation detection without requiring manual annota-
tions. GraphEval (Sansford et al., 2024) proposes
a method of detecting inconsistencies with respect
to provided knowledge using a knowledge-graph
approach.

Prompt engineering is a crucial technique for
extending the capabilities of LLMs (Sahoo et al.,
2024). A commonly used strategy is few-shot
prompting, which refers to the technique of con-
structing prompts using a small set of demonstra-
tive input-output examples (Lazaridou et al., 2022;
Ma et al., 2023). Another method that has been
proved effective is chain-of-thought (CoT) prompt-
ing, which is achieved by guiding the LLM to think
step by step to perform complex reasoning tasks
(Wei et al., 2022; Zhang et al., 2022; Chen et al.,
2023).

Named entity recognition (NER) (Yadav and
Bethard, 2019) is the task of identifying named
entities such as person, location and organization
in text, which are often central to factual inconsis-
tencies in LLM-generated text. Deep learning ap-
proaches have increasingly been adopted for NER
and have exhibited impressive abilities across vari-
ous domains and languages (Li et al., 2020; Song
et al., 2021; Liu et al., 2022). Recent research
also explores the possibility of integrating prompt-
ing techniques into NER tasks by utilizing LLMs
(Shen et al., 2023; Hu et al., 2024). While NER is
limited to identifying predefined entity types and
cannot assess the broader context or relationships
between entities, it can still serve as a tool for de-
tecting potential sources of hallucinations, making
it a possible referential benchmark.

3 System Overview

3.1 Fine-tuning Procedure

The goal of this task is to detect hallucinations
and identify their spans, defined by character in-
dices, within an answer generated in response to
a question. One of the ways to address this is to
reformulate the problem as a token classification

task, where hallucinated tokens are labeled as 1 and
non-hallucinated tokens as 0.

We conducted experiments on Transformer-
based models to evaluate their performance on this
task. Given the limited size of the validation sets
(50 labeled data points per language), all base mod-
els were trained on our self-generated data (approx-
imately 2K data points per language).

3.1.1 Data Construction

It is crucial to have sufficient data to fine-tune pre-
trained language models in order to enhance their
performance on specific tasks. However, the train-
ing sets provided by the organizers are unlabeled
and are thus unable to be used directly for fine-
tuning. Therefore, we proposed a semi-automatic
approach to construct labeled data by prompting
state-of-the-art generative language models, specif-
ically GPT-4o.

In order to obtain the data in a manner similar to
that of the labeled validation sets provided by the
organizers, we explored a combination of few-shot
prompting and chain-of-thought (CoT) prompting
techniques. Specifically, we utilized several data
points in the labeled validation set as learning ex-
amples and guided the LLM to infer hallucinated
content based on the spans marked by human an-
notators in those samples.

A closer examination of the generation revealed
that the LLM often misidentified the span bound-
aries of the hallucinated words it generated. There-
fore, we optimized the pipeline of data construc-
tion by prompting the LLM to identify the hallu-
cinated words first and subsequently convert the
tokens to spans. To that end a simple algorithm
was applied, which would automatically iterate
through the model output text, locate each hallu-
cinated word, and mark its start and end character
indices. This additional step significantly increases
the quality of generated annotations.

A number of 2,371 data points in English was
constructed initially for testing purposes. In addi-
tion to those, ultimately, we constructed 2000 data
points for each of the 12 other languages in which
we participated. The detailed prompt is shown in
Appendix C.

3.1.2 Base Models and Token Classification
Setup

For fine-tuning, we experimented with a diverse set

of pretrained Transformer-based models (Vaswani

et al., 2017), starting with monolingual architec-

1725

tures and later transitioning to multilingual models,
which support all 13 target languages, to achieve
broader language coverage. We focused on the En-
glish monolingual models to compare their perfor-
mance with that of the multilingual models. Table
1 and Table 2 in the Appendix B show the details
of the base models.

AutoModelForTokenClassification classes
from the Hugging Face transformers library
(Wolf et al., 2020) are used to load each of the base
models and their tokenizers. This step attaches a
randomly initialized linear classification layer on
top of the Transformer encoder, ensuring the model
outputs token-wise predictions for binary classes (1
or (for hallucination or non-hallucination, respec-
tively). The label mappings are explicitly defined
through the model’s configuration using id21abel
and label2id. The model performs sequence la-
beling, where each token in the input sequence is
assigned a binary label based on both its own iden-
tity and its contextual information from the entire
sequence.

3.2 Performance Evaluation

A system’s capability to capture hallucination spans
is assessed along two main dimensions: (i) the over-
lap between the system’s predicted hallucination
spans and human annotations, and (ii) the align-
ment in reasoning between the system and human
annotators, reflected in the correlation between the
confidence of system predictions and the agreement
of human annotators on hallucination spans.

These two evaluation dimensions were measured
using Intersection over Union (IoU) and Correla-
tion (Cor) scores, respectively.

The IoU score quantifies the overlap between
predicted hard labels and reference hallucination
spans by dividing the size of their intersection by
the size of their union. If neither the prediction nor
the reference contains hallucinations, the score is
set to 1.0.

The Cor score quantifies the agreement between
predicted soft labels and reference confidence lev-
els, which are computed as the fraction of anno-
tators who labeled a span as hallucinated. This
agreement is measured using Spearman’s rank cor-
relation (Spearman, 1987). The score ranges from
-1 to 1, where 1 indicates perfect agreement, O sig-
nifies no correlation, and -1 represents complete
disagreement.

4 Experimental Setup
4.1 Model Fine-Tuning

The fine-tuning procedure began with pre-
processing the training data, aligning tokens with
binary labels to indicate hallucination. Fine-tuning
Stage 1 was conducted using our auto-generated
training data. This step is followed by fine-tuning
Stage 2 using the labeled validation sets provided
by the task’s organizers, either with all available
sets (for multilingual models) or the validation set
corresponding to the specific test language (for both
monolingual and multilingual models). Model per-
formance was assessed for both fine-tuning stages.
The experimental architecture is illustrated in Fig-
ure 1.

4.1.1 Data Preprocessing

Label Alignment In all labeled datasets used for
fine-tuning, hallucination spans are provided in the
format [start_index, end_index]. We lever-
aged this span information to automatically gener-
ate labels for each token before feeding the train-
ing data into the base models. After tokeniza-
tion, labels are assigned based on each token’s
offset_mapping: tokens whose start and end in-
dices fall within any hallucination span receive a
label of 1, while all others are labeled 0.

Data Split We used a 9:1 training-validation
split on our self-generated labeled data, resulting in
approximately 1,800 training samples and 200 vali-
dation samples for each of the 13 languages. These
included nine announced target languages: Arabic,
German, English, Spanish, Finnish, French, Hindi,
Italian, and Chinese, as well as four surprise lan-
guages: Czech, Catalan, Basque and Farsi, which
were revealed only after the test set was released
by the organizers.

We evaluated our models’ performance using the
labeled validation sets provided by the organizers
after fine-tuning. We chose these sets as test data
due to (i) their high-quality hallucination spans an-
notated by human annotators and (ii) their likely
similarity to the data used by the organizers for fi-
nal evaluation. In contrast, our semi-automatically
generated labeled data were not reviewed by native
speakers and may be of lower quality. However,
since labeled validation sets were not available for
the four surprise languages, we generated 50 la-
beled data points for each of these languages for
testing purpose using the same method as for our
training data.

1726

] Stage1

(10 epochs)
Data Generation
/Data Preprocessing
(tokenize and align Fine-Tune LMs
labels)

-

Stage 2
(10 epochs)

: Output Post-

i[A. Further fine-tune i Processing

i| with all validation |: I

d sets]

Final

Submission

:(B. Further fine-tune

i| with 1 validation set |}

i\ (targetlanguage) Output Post-
Processing

.......................

Output Post- Model
Processing Evaluation

Figure 1: Fine-Tuning Pipeline.

4.1.2 Hyperparameters for Tokenization and
Training

For the fine-tuning procedure, the same set of hy-

perparameters for both tokenization and training

was applied to all base models. The same hyperpa-

rameters were applied to both fine-tuning Stage 1

and Stage 2.

Tokenizer Parameters Only the generated an-
swers (model_output_text) were tokenized as
input for model fine-tuning, while the inquiries
(model_input) were not used. Tokenization in-
cluded padding with a maximum length of 128
tokens and the application of truncation. Ad-
ditionally, return_offsets_mapping was set to
True, as the offset mapping is crucial for convert-
ing hallucination spans into token-level labels after
tokenization. Details on this process are discussed
in Section 4.1.1.

Training Parameters The training process was
configured with a predefined set of parameters.
The learning rate was set to 2e-5. Batch sizes
were defined as 8 for both training and evalua-
tion (per_device_train_batch_size = 8 and
per_device_eval_batch_size = 8). The num-
ber of training epochs was set to 10, as our pre-
liminary experiments indicated that model perfor-
mance plateaued around this point. Additionally, a
weight_decay of 0.01 was applied to the training
arguments.

4.1.3 Output Post-Processing

During the inference stage, the input text was tok-
enized and processed by the models to obtain logits
for each token to be assigned to one of the two

possible labels. The logits were later converted
to probabilities using the softmax function, which
normalized the scores along the label dimension:

exp(z;)
S ey

In the formula above, P(y; | x) represents the
probability of the ¢-th label for a given token, and
z; the corresponding logit.

To identify hallucination spans, contiguous to-
kens labeled as "1" (hallucinated) were grouped
based on their start and end indices derived from
the token offset mappings. Adjacent "1" labels with
consecutive indices were treated as a single span.
For each span, the average probability of the "1"
labels was computed, providing a confidence score
that reflects the model’s uncertainty regarding the
span’s validity. This average probability, along
with the start and end indices of each hallucination
span, together form the soft labels. Hard labels are
then derived by selecting spans from the soft labels
with a probability of 0.5 or higher.

4.2 Benchmarks for Evaluation

To assess whether fine-tuning improves model per-
formance in hallucination detection, we evaluate
the predictions of the models from fine-tuning
Stage 1 on the organizers’ validation sets. This
evaluation uses Cor and IoU scores and compares
the results against three benchmarks: (i) the bench-
mark provided by the organizers and (ii) the perfor-
mance of a pretrained multilingual Named Entity
Recognition (NER) model.

1727

Organizers’ Benchmark The bench-
mark provided by the organizers was de-
rived by fine-tuning the multilingual model
FacebookAI/x1m-roberta-base (Conneau et al.,
2019a) using the labeled validation sets they
released. These validation sets contained 50 data
points per language across 10 languages, excluding
the four surprise languages.

Cor and IoU scores were computed for each test
language. The base model was trained on vali-
dation sets from all languages except the test lan-
guage, ensuring no test data leakage. This pro-
cess was repeated for each language, yielding 10
fine-tuned models, each tailored to a specific test
language. Fine-tuning was performed using the
model_output_text and two label types, which
classified tokens as either hallucinated or non-
hallucinated.

NER Benchmark A close examination of the
sample set shows that a considerable number of hal-
lucinations involve proper nouns, such as names of
people, places or organizations. We therefore pro-
posed using a model fine-tuned for NER to make
predictions without further fine-tuning, in order
to serve as a comparison to the models fine-tuned
specifically for this task.

This benchmark was created using the pre-
trained NER model 511a5/roberta-large-NER
(Conneau et al., 2019b), a large multilingual lan-
guage model supporting all 13 of our target lan-
guages. Trained on 2.5TB of filtered Common-
Crawl data, this model is an XLM-RoBERTa-large
variant fine-tuned on the CoNLL-2003 dataset for
English NER. We used the model as-is, without
any additional fine-tuning. As a result, it treated all
named entities as hallucinations.

5 Results

Our submission included 21 models in total, with
different combinations of models and training data
used. These were the following:

* Multilingual models trained on the synthetic
data only (26.3K data points, 10 epochs)

* Multilingual models trained on the synthetic
data (26.3K data points, 10 epochs) and fine-
tuned further with a single validation set for
the target language (50 data points, 10 epochs)

* Multilingual models trained on the synthetic
data (26.3K data points, 10 epochs) and fine-

tuned further with all the validation sets (650
data points, 10 epochs)

* English language models trained on the syn-
thetic data only (2.3K data points, 10 epochs)

* English language models trained on the syn-
thetic data only (2.3K data points, 10 epochs)
and fine-tuned further with a single validation
set for the English language (50 data points,
10 epochs)

From all the combinations the models trained
on the maximum amount of data showed supe-
rior results, with some minor exceptions (see Ap-
pendix D). Our best average performing model was
based on x1m-roberta-large.

As opposed to the initial submission, when the
models were trained on the generated answers only
(model_output_text), we have conducted an ad-
ditional test, and trained xIm-roberta-large base
model again with the same parameters, but using
a concatenation of the questions and the answers
as the training input, separating them with an addi-
tional special token ’<@@>’. We have used similar
joint input for inference and adjusted the spans
accordingly. The results of such training have out-
performed all of our other approaches, with a signif-
icant increase of scores for all of the languages ex-
cept English and Chinese. A comparative summary
of the models’ IoU scores is shown in Appendix A.

6 Conclusion and Limitations

As our participation in SemEval-2025 Task-3, we
proposed the approach of fine-tuning language
models with synthetic data for hallucination span
prediction. The results demonstrate that our sys-
tem achieved competitive scores across various lan-
guages. Our approach is proved effective as the
scores rank as high as 5Sth in certain languages.
The fact that the model is exclusively fine-tuned
on data constructed by LLM suggests that this ap-
proach is a feasible and effective strategy for the
task of hallucination span prediction, particularly
under the circumstance where human-labeled train-
ing data is absent. However, it is worth pointing
out that LLM-based synthetic data are potentially
more heavily subject to limitations compared with
hand-crafted data. A closer examination suggests
that the quality of the synthetic data does not match
that of the validation and test sets provided by the
organizers. Across various languages, the synthetic

1728

data can often be shorter or significantly longer
in output length, cover a narrower range of top-
ics, and propose less sophisticated question-and-
answer pairs than those in the validation and test
sets. These problems can supposedly be addressed
through few-shot prompting and more elaborate
prompt-engineering. It is also important to men-
tion, that although various efforts have been made
in both prompting and post-processing to increase
the likelihood that the spans correctly indicate the
hallucinated texts, the final output is still prone to
errors and may not match the accuracy of human-
annotated data, although it was reported that mod-
els trained on data generated in a similar manner
outperform models trained on real-world data in
certain tasks (Li et al., 2023). In addition, it should
also be noted that predominantly only one model,
GPT-4o, is used for data synthesis. This lack of
variation in model choice may limit the diversity
of the synthetic data, which could in turn poten-
tially reinforce the intrinsic biases of the model in
question.

Future directions could include creating and uti-
lizing training data in large quantities, as well as
optimizing prompting techniques to obtain higher-
quality training data from LLMs. Another viable
approach would be to adopt more advanced state-
of-the-art models for either data creation or fine-
tuning.

7 Acknowledgments

We would like to express our gratitude to our su-
pervisor, Jorg Tiedemann, for valuable suggestions
and guidance throughout this work.

8 Individual Contributions

Xinyuan Mo: Model fine-tuning, including I. con-
structing python script for: 1) data preprocessing
(tokenizing and aligning labels), 2) fine-tuning mul-
tiple base models, and 3) output generation and
scoring (integrating code "scorer.py" from the
organizers to generate scores), and II. executing the
fine-tuning and scoring procedure on Puhti super-
computer.

Writing of the sections of the paper: System
Overview (excluding the "Data Construction"
subsection) and Experimental Setup.

Nikolay Vorontsov: Experimenting with various
options for data construction, including: 1. Di-
rect prompting with Gemini and GPT through

APIs and output post-processing; 2. Generating
question-answers pairs from given input texts (with
AutoModelForQuestionAnswering, QuestionAn-
sweringPipeline) and refining them with a gener-
ative model. 3. Converting the labeled datasets
into translated versions with the preserved label-
ing (with Google Translator API) and output post-
processing.

Development of the system for labeling the
datasets with LLMs through API (used as an-
other baseline during development), automated
post-processing of the output, union and intersec-
tions of the models’ predictions.

Development of alternative fine-tuning strategies
with different training parameters, including LoRA
parameter-efficient fine-tuning of Llama 7B model
with 4-bit quantization. Alternating tokenization
pre-processing and post-processing to include both
questions and answers during the training and infer-
ence stages. Setting up the environment on Puhti su-
percomputer, running training and prediction jobs.

Limited project management, including setting
up shared repositories, communication channels,
submitting the final predictions to the shared task.

Writing of the Results section of the paper,
analysis of the results, creating figures, and
formatting.

Tiankai Zang: Data construction, including 1)
designing and testing various prompting techniques
for optimal outputs, 2) overseeing the data gener-
ation process and making adjustments as needed,
and 3) converting the data to desired format for
fine-tuning.

Writing of the sections of the paper: Abstract, In-
troduction, Background, System Overview ("Data
Construction" subsection), Conclusion and Limita-
tions.

References

Jiuhai Chen, Lichang Chen, Heng Huang, and
Tianyi Zhou. 2023. When do you need chain-of-
thought prompting for chatgpt? arXiv preprint
arXiv:2304.03262.

Hyung Won Chung, Noah Constant, Xavier Garcia,
Adam Roberts, Yi Tay, Sharan Narang, and Orhan
Firat. 2023. Unimax: Fairer and more effective lan-
guage sampling for large-scale multilingual pretrain-
ing. arXiv preprint arXiv:2304.09151.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco

1729

Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019a. Unsupervised

cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019b. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

deepset. 2020. Roberta-base fine-tuned on
squad?. https://huggingface.co/deepset/

roberta-base-squad2.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-

ing.

Yan Hu, Qingyu Chen, Jingcheng Du, Xueqing Peng,
Vipina Kuttichi Keloth, Xu Zuo, Yujia Zhou, Zehan
Li, Xiaoqian Jiang, Zhiyong Lu, et al. 2024. Im-
proving large language models for clinical named
entity recognition via prompt engineering. Journal
of the American Medical Informatics Association,
page ocad259.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1-38.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot
prompting for open-domain question answering.
arXiv preprint arXiv:2203.05115.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020. A survey on deep learning for named entity
recognition. /EEE transactions on knowledge and
data engineering, 34(1):50-70.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng,
Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
2024. The dawn after the dark: An empirical study
on factuality hallucination in large language models.
arXiv preprint arXiv:2401.03205.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin.
2023. Synthetic data generation with large language
models for text classification: Potential and limita-
tions. pages 10443—-10461, Singapore.

Pan Liu, Yanming Guo, Fenglei Wang, and Guohui Li.
2022. Chinese named entity recognition: The state
of the art. Neurocomputing, 473:37-53.

Huan Ma, Changqing Zhang, Yatao Bian, Lemao Liu,
Zhirui Zhang, Peilin Zhao, Shu Zhang, Huazhu Fu,
Qinghua Hu, and Bingzhe Wu. 2023. Fairness-
guided few-shot prompting for large language mod-
els. Advances in Neural Information Processing Sys-
tems, 36:43136-43155.

Potsawee Manakul, Adian Liusie, and Mark JF Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models. arXiv preprint arXiv:2303.08896.

Timothee Mickus, Elaine Zosa, Rail Vazquez, Teemu
Vahtola, Jorg Tiedemann, Vincent Segonne, Alessan-
dro Raganato, and Marianna Apidianaki. 2024.
Semeval-2024 task 6: Shroom, a shared-task on hallu-
cinations and related observable overgeneration mis-
takes. In Proceedings of the 18th International Work-
shop on Semantic Evaluation (SemEval-2024), pages
1979-1993.

Gabrijela Perkovié, Antun Drobnjak, and Ivica Boticki.
2024. Hallucinations in llms: Understanding and
addressing challenges. In 2024 47th MIPRO ICT and
Electronics Convention (MIPRO), pages 2084-2088.
IEEE.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,
Vinija Jain, Samrat Mondal, and Aman Chadha.
2024. A systematic survey of prompt engineering in
large language models: Techniques and applications.
arXiv preprint arXiv:2402.07927.

Hannah Sansford, Nicholas Richardson, Hermina Petric
Maretic, and Juba Nait Saada. 2024. Grapheval: A
knowledge-graph based 1lm hallucination evaluation
framework. arXiv preprint arXiv:2407.10793.

Yongliang Shen, Zeqi Tan, Shuhui Wu, Wenqi Zhang,
Rongsheng Zhang, Yadong Xi, Weiming Lu, and
Yueting Zhuang. 2023. Promptner: Prompt locat-
ing and typing for named entity recognition. arXiv
preprint arXiv:2305.17104.

Bosheng Song, Fen Li, Yuansheng Liu, and Xiangxiang
Zeng. 2021. Deep learning methods for biomed-
ical named entity recognition: a survey and qual-
itative comparison. Briefings in Bioinformatics,
22(6):bbab282.

Charles Spearman. 1987. The proof and measurement
of association between two things. The American
Jjournal of psychology, 100(3/4):441-471.

1730

http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
https://huggingface.co/deepset/roberta-base-squad2
https://huggingface.co/deepset/roberta-base-squad2
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647

Weihang Su, Changyue Wang, Qingyao Ai, Yiran Hu,
Zhijing Wu, Yujia Zhou, and Yiqun Liu. 2024. Unsu-
pervised real-time hallucination detection based on
the internal states of large language models. arXiv

preprint arXiv:2403.06448.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30.

Rail Véazquez, Timothee Mickus, Elaine Zosa, Teemu
Vahtola, Jorg Tiedemann, Aman Sinha, Vincent
Segonne, Fernando Sidnchez-Vega, Alessandro Ra-
ganato, Jindfich Libovicky, Jussi Karlgren, Shaox-
iong Ji, Jindfich Helcl, Liane Guillou, Ona de Gib-
ert, Jaione Bengoetxea, Joseph Attieh, and Mari-
anna Apidianaki. 2025. SemEval-2025 Task 3: Mu-
SHROOM, the multilingual shared-task on hallucina-
tions and related observable overgeneration mistakes.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38—45, Online. Association for Computational
Linguistics.

Vikas Yadav and Steven Bethard. 2019. A survey on re-
cent advances in named entity recognition from deep
learning models. arXiv preprint arXiv:1910.11470.

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou,
Lifeng Jin, Linfeng Song, Haitao Mi, and Helen
Meng. 2024. Self-alignment for factuality: Mitigat-
ing hallucinations in 1lms via self-evaluation. arXiv
preprint arXiv:2402.09267.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

1731

https://helsinki-nlp.github.io/shroom/
https://helsinki-nlp.github.io/shroom/
https://helsinki-nlp.github.io/shroom/
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

A ToU Scores for models trained on synthetic data and fine-tuned further with either: (1)
all the validation sets (multilingual models); (2) single validation set (English language
models)

0.750 .
0.725 ‘@
0.700 1 gt
06751 g : - -

0.650 e RSN ..»‘ y BE— °
0.625 1 ¥ 2 :
06001 k

0.575 o 3 = g 2 ; : B
0.550 1 B L]
05254 T ° hs 8- L} 3 ! B
0500 S e i
0.475 1 . @
0.450 e R -
0.425 1 FEhN y &

0.400 - - ; : ’
0375 1
0.350 e . . ——
0.3251 Ce e . S
0.300 4 .
0.275 4 o
0250 o
0.225
0.200 1
0.175
0.150
0.125

& & & & & R & ‘<‘ & N N ®

% 4

-4@- Best SemEval Score FacebookAl/xIm-roberta-large ® google/umt5-small
NER Baseline FacebookAl/xIm-roberta-large, trained with Question + <@@> + Answer deepset/roberta-base-squad2
SemEval Baseline (mark all) @ google-bert/bert-base-multilingual-cased google-bert/bert-base-cased
FacebookAl/xIm-roberta-base google/umt5-base microsoft/deberta-v3-base

B Base Models Used

Model Description

google-bert/bert-base-cased | 109M parameters, pretrained for masked language mod-
eling (MLM) (Devlin et al., 2018).

deepset/roberta-base-squad2 | 124M parameters, a RoOBERTa-base model fine-tuned
for extractive question answering (deepset, 2020).

microsoft/deberta-v3-base 86M backbone parameters, pretrained for replaced token
detection (He et al., 2021).

Table 1: Monolingual (English) base models for fine-tuning

Model Description
google-bert/bert-base- 179M parameters, 104 languages, pretrained for MLM
multilingual-cased and next sentence prediction (NSP) (Devlin et al., 2018)

google/umt5-small
google/umt5-base

179M parameters, 102 languages (Chung et al., 2023)

FacebookAI/x1lm-roberta-base 279M (base) / 561M (large) parameters, 94 languages,
FacebookAI/x1m-roberta-large pretrained for MLM (Conneau et al., 2019a)

Table 2: Multilingual base models for fine-tuning

1732

C Prompt for Data Construction

""Given information 1:

"model_input”: "How many genera does the
Erysiphales order contain?”,

"model_output_text"”: "The Elysiphale order
contains 5 genera.",

"Model_output_text"” is supposed to be the
answer to the question in "model_input” but
contains some errors (hallucinations) which
contradict the fact. Your task is to specify the
spans of the erroneous texts and mark them as
"soft_labels”.

In order to do this, firstly, you should
locate the erroneous texts based on the question
asked in "model_input” as well as the fact. For
example, in this case, Elysiphale order contains
4 genera instead of 5; the span of "4" is [31,
32]; and it has a probability of 1 to be
erroneous. Therefore, you should specify this in
the following way:

{ "start"”: 30, "prob”: 1, "end": 31 }.

Apply the same approach to other parts of the
text. The final result is:

"soft_labels”: [
{ "start": 4, "prob": 0.2, "end": 14 },
{ "start": 30, "prob”: 1, "end": 31 },
{ "start”: 31, "prob": 0.2, "end”: 38 }1,
"hard_labels”: [[30, 3111,
For your information, here are two more examples:

Example 1

"model_input”: "Do all arthropods have
antennae?”,

"model_output_text”: "Yes, all insects and

arachnids (including spiders, scorpions, and
ticks) have at least one antenna.”,
"soft_labels": [

{ "start"”: 10, "prob”: 0.2, "end": 12 },
{ "start": 12, "prob”: 0.3, "end": 13 3},
{ "start"”: 13, "prob”: 0.2, "end": 18 },
{ "start": 25, "prob”: 0.9, "end": 31 3},
{ "start"”: 31, "prob”: 0.1, "end": 37 },
{ "start": 45, "prob”: 1, "end": 49 3},
{ "start"”: 49, "prob”: 0.3, "end": 65 },
{ "start": 65, "prob”: 0.2, "end": 69 },
{ "start"”: 69, "prob”: 0.9, "end": 83 }1,
Example 2
"model_input”: "What did Petra van Staveren
win a gold medal for?",
"model_output_text"”: "Petra van Stoveren won a

silver medal in the 2008 Summer Olympics in
Beijing, China.",
"soft_labels": [

{ "start”: 10, "prob”: 0.2, "end": 12 },
{ "start": 12, "prob”: 0.3, "end": 13 },
{ "start”: 13, "prob”: 0.2, "end": 18 3},
{ "start”: 25, "prob”: 0.9, "end": 31 },
{ "start”: 31, "prob”: 0.1, "end": 37 3},
{ "start”: 45, "prob”: 1, "end": 49 },
{ "start": 49, "prob”: 0.3, "end": 65 },
{ "start"”: 65, "prob”: 0.2, "end": 69 },
{ "start"”: 69, "prob”: 0.9, "end": 83 }1,
"hard_labels”: [[25, 311, [45, 491, [69, 83]
]:
You should:

1. Study the examples above, understand why and
how certain texts in "model_output_text"” are
labeled.

2. Please generate a similar example, in which
you ask a question, answer it with one or a few

hallucinations deliberately, and label the
hallucinated words (instead of the spans and
probabilities of possible hallucinations).
3. You are encouraged to include more than two
hallucinated words in your output.
4. You do not need to explain your annotations.
5. The output format should be JSON.
The format should be:

"model_input”:

"model_output_text":

"hallucinated_words”: <list all hallucinated
words in "model_output_text"” here>
generate your response in {lang}""

The above prompt was used as an input for
dialogue systems, with a language specified inside
{lang}. The output was then manually copied and
pasted into a .jsonl file, repetitive outputs were
eliminated. Hard labels were created by running
the following example code:

import json

current_id = 1

with open(’eu-sim-val-raw.json’, ’r’, encoding=’"utf
-8’) as file:
data = json.load(file)

with open(’eu-sim-val.jsonl’, ’a’, encoding=’utf-8")
as output_file:

for entry in data:
model_input = entry["model_input”]
model_output_text = entry[”"model_output_text
"]
spans = []

for word in entry["hallucinated_words”]:
start_index = 0
while True:
start_index = model_output_text.find
(word, start_index)
if start_index == -1:
break
end_index = start_index + len(word)
spans.append([start_index, end_index
n

start_index = end_index

result = {
"id": current_id,

"created_with": "GPT40",

"lang": "eu",

"model_input”: model_input,

"model_output_text"”: model_output_text,

"hard_labels”: [[start_index, end_index]
for start_index, end_index in
spans]

3
current_id += 1
json.dump(result, output_file, ensure_ascii=

False)
output_file.write("\n")

1733

D Comparison of IoU Scores for Different Fine-Tuning Strategies of Multilingual Models

loU Scores by Language and Model

0.8
mmm FacebookAl/xIm-roberta-large, synthetic data + all validation sets, trained with Question + <@@> + Answer

0.71

0.6

® & & N & & Q & Q@ <&

Languages

0.

n

0.

IS

loU Score

0.

w

0.

[N}

0.

i

0.

o
%
.
%

loU Scores by Language and Model

0.8
EmE FacebookAl/xIm-roberta-large, synthetic data + all validation sets
mmm FacebookAl/xIm-roberta-large, synthetic data + single validation set
0.7 { ™= FacebookAl/xIm-roberta-large, synthetic data only

0.6
0.5
0.4
0.3
0.2
0.1
0.0 -
® & © & > & QO & < & D N QR

Languages

loU Score

loU Scores by Language and Model

0.8
B FacebookAl/xIm-roberta-base, synthetic data + all validation sets
I FacebookAl/xIm-roberta-base, synthetic data + single validation set
0.7 4 B FacebookAl/xIm-roberta-base, synthetic data only
0.6
0.5 A
<
S
wn 0.4
=}
2
0.3 A
0.2
0.1
0.0 -
® & & & S & < & < & > < ®

Languages

1734

loU Score

loU Score

loU Score

loU Scores by Language and Model

0.8

0.7 4

0.6 -

0.5 1

0.4 1

0.3 4

0.2

0.14

0.0 -

K3

&

&

&

&

B google/umt5-small, synthetic data + all validation sets
B google/umt5-small, synthetic data + single validation set
B google/umt5-small, synthetic data only

N

<& S & < & 2
Languages

QR

loU Scores by Language and Model

0.8

0.7 4

0.6 -

0.5 1

0.4

0.3 4

0.2 4

0.14

0.0 -

%

&

&

mmm google/umt5-base, synthetic data + all validation sets
= google/umt5-base, synthetic data + single validation set
mmm google/umt5-base, synthetic data only

™

<& S & < & 2
Languages

loU Scores by Language and Model

0.8

0.7 4

0.6 -

0.5 1

0.4 4

0.3 4

0.2 4

0.1

0.0 -

%

<&

&

B google-bert/bert-base-multilingual-cased, synthetic data + all validation sets
[google-bert/bert-base-multilingual-cased, synthetic data + single validation set
mmm google-bert/bert-base-multilingual-cased, synthetic data only

n

<& > & < <& 2

Languages

1735

S¥1°0 ATUO BIEp "IUAS ‘QSBQ-EA-B1I9qOP/)JOSOIOTW

9G1°0 J3S ‘TeA T + ©Jep "YIUAS ‘9Seq-¢A-8)19qOP/)JOSOIOTW

9.£°0 A[UO ®JBp "YIUAS ‘pIsSLI-95eq-119q/110q-9[3003

96€°0 135 ‘TeA T + BJep "YIUAS ‘pased-9seq-119q,112q-9[3003

€€e0 AJuo ®eyep "uAs ‘gpenbs-oseq-eireqoisiesdoop

TLE0 198 ‘TeA T + ejep "uks ‘gpenbs-aseq-eiraqoisesdaap

S]12pO [PNSurjouo

orI'0 08¢0 €L£0 00C°0 LSTO S0 SSC0 S9C0 LITO SCIE0 <¢STO 8S€0 86C0 A[uo eyep ‘(uAs ‘[ews-giun/2[5008
80¢'0 0Tr'0 68¢0 16C0 <CTrr'0 80 06C0 69C0 89C0 €SS0 L9CT0 8LEO 18€0 198 “[eA [+ eiep yiuks ‘[rews-gyun/a[5003
€0€'0 8LV'O STP0 610 8yr'0 SCE0 8¢E0 CBCO 0STO 0660 €C€0 66€0 IIv0 $198 “[eA [[€ + EJEp "YIUAS ‘[[ews-Giun/d[3003
I81°0 9L£0 L8C0 ¥CCT0O 8LTO ¥ev'0 €LT0 €620 0TT0 LOEO 6¥T0 S8E0 LIEO Aquo eyep ‘yuLs ‘aseq-gum/o[3003
62€'0 60S0 L9¥0 90¥'0 OISO €€¥'0 90€0 <TCE0 <TOE0 ISP0 09CT0 6660 1LVO 108 “Jea [+ e1ep ‘yiuks ‘dseq-giun/a[3003
I2€°0 €050 8¢SO 10¥’0 TISO 88€0 TLEO €0€0 660 VveEY'0 €9¢0 Pev'0 6vy0 §105 "[BA [[€ + EJEP [IUAS ‘Oseq-GIun/a[5003
arl’'0 ILV'0 CSP0 89C°0 veEEO TIS0 <Cce0 O0I€0 SO0 9S€0 89C0 CIvo SSE0 A[uo eiep "yiuds ‘pases-fenSulNnw-0seq-112q/11G-9[3003
8I¢0 I¥90 +09°0 [IS¥0 €IS0 €950 IL€0 L6CO vI¥VO 0870 11€0 <TCv0 CISO 108 "[eA | + B1Ep "YIUAS ‘PAsed-[en3ul[n[nui-0seq-112q/11q-9[3003
0T€0 1S90 LS90 SISO 1SS0 T190 LSKO L8€0 TLYO SESO H6E0 €TS0 LESO S19S ‘[eA [[€ + BIEP "YIUAS ‘Paseo-[enSul[I[Nu-0seq-119q/110q-9[3008
€LE0 €GL°0 SEL0 9IS0 LI90 TOL0 €LS0 L6E0 LyPO 8LE0 TOPO 6LS0 €090 sired yO yIM pauren ‘oSIe[-elaqol-WX/[V00qade]
1120 T80 6IY'0 08C0 T9E0 6L5°0 6€€0 100 P20 0LEO0 69C0 08¢0 €8€0 A[uo ejep "yiuLs ‘o5Ie[-ELqOI-W]X/[Y00qak]
19€°0 L99°0 LT90 SvP'0 €950 L9S°0 SIY'0 €S€0 6cv'0 9160 80 9¢v’'0 0850 108 “[BA [+ B1Ep "(IUAS ‘05Ie[-ELIOqOI- WX/ 00qdk]
0v'0 1690 €¥9°0 ¥8Y'0 ILSO 8650 +ESO0 LO9EO L¥Y'O +96°0 T80 ¢€6v'0 8SS0 $10S "[BA [[€ + EJep "YIUAS ‘O3Ie[-L1aqOI-W[X/[V]00qade]
€10 S8%¥0 ¥¥r'0 060 80€0 9L6°0 IS€0 86C0 €I€0 €9¢€0 <¢9CT0 ¥Iv0 19¢0 K[uo eIep "(IUAS ‘OSBq-BIIQOI-W[X/[V00qadE]
¢ee0 8€9°0 CC90 0Tr'0 €S0 P9GS0 T6E0 6IE0 €9€°0 89¥'0 SO0C0 0ev'0 6050 198 “JeA [+ BIEp “(IUAS ‘9SBq-ELIDQOI-WI[X/[VH00GIIL]
LSEO €¥9°0 LSOO O9LYO0 1€S0 SS90 LSYO L9E0 90¥0 ¥CEO TSEO €IS0 LTSO $108 “[EA [[€ + BJep ‘(IUAS ‘9Seq-EUAqOI-W]X/Y]00qae]
HZ LI IH ud 14 vd nd sq NH 4d Ne] VO qv S1oPO [onSunumpy

SIPPOIAl 93U} [[V 10J 31098 O]

1736

