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Abstract

Large Language Models (LLMs) have shown
remarkable performance across diverse natu-
ral language processing tasks in recent years.
However, optimizing instructions to maximize
model performance remains a challenge due to
the vast search space and the nonlinear relation-
ship between input structure and output qual-
ity. This work explores an alternative prompt
optimization technique based on genetic algo-
rithms with different structured mutation pro-
cesses. Unlike traditional random mutations,
our method introduces variability in each gener-
ation through a guided mutation, enhancing the
likelihood of producing better prompts at each
generation.. We apply this approach to emotion
detection in the context of SemEval 2025 Task
11 for English language solely, demonstrating
the potential to improve prompt efficiency, and
consequently task performance. Experimental
results show that our method yields competi-
tive results compared to standard optimization
techniques while maintaining interpretability
and scalability.

1 Introduction

Large Language Models (LLMs) have experienced
significant growth in recent years. Their remark-
able performance stems from their ability to under-
stand and model language more effectively than
any previously developed tool (Brown et al., 2020).
The essential interest in LLMs lies in their capacity
to excel at numerous specific tasks without requir-
ing extensive fine-tuning or contextual information
(Radford et al., 2019; Devlin et al., 2019). This
is quite powerful in many ways. On the one hand,
more traditional machine learning or deep learn-
ing models require a significant amount of data to
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Figure 1: Comparison between Classic EvoPrompt and
EvoPrompt SM. In Classic EvoPrompt (a), mutations
occur randomly, leading to uncontrolled modifications.
In EvoPrompt SM (b), structured mutations such as
semantic reformulation and context specification are
applied, ensuring systematic optimization.

achieve LLM performance (LeCun et al., 2015).
On the other hand, by having an LLM available,
you have a model capable of performing almost any
natural language-related task with a high level of
competence. Nevertheless, despite the outstanding
performance demonstrated by LLMs, their ability
to process and understand subjective aspects of
text, such as human emotions, remains a complex
challenge (Zhang et al., 2023; Sabour et al., 2024,
Singh et al., 2023).

One particularly challenging task is identifying
the emotion experienced by the author when writ-
ing a text, rather than the emotion perceived by
the reader (Alvarez-Gonzalez et al., 2021). This
distinction is crucial in tasks such as sentiment
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analysis, psychological research, and user experi-
ence evaluation. The SemEval 2025 Task 11A
competition focuses precisely on this challenge
(Muhammad et al., 2025b), providing a dataset
where sentences are labeled based on the author’s
emotional state at the time of writing, rather than
how a reader interprets the text (Muhammad et al.,
2025a). This task is more complex than traditional
emotion classification, especially for LLMs, which
lack direct access to human emotional experiences.
They infer emotions based purely from linguistic
patterns present in their training data (Chochlakis
et al., 2024). Therefore, determining the optimal
way to prompt an LLM to infer the author’s emo-
tions is non-trivial and requires careful design (Li
et al., 2023).

However, the performance of LLMs is highly de-
pendent on how prompts are constructed (Desmond
and Brachman, 2024). Developing more effective
prompts is essential, particularly given that there
is no single correct method for doing so (Li et al.,
2025). Within this context, prompt engineering has
reached a boom, and human-constructed prompts
are the vast majority of the time used to perform
tasks with an LLM (Webber et al., 2020). Despite
this, determining how to best phrase a prompt to
make an LLM infer the emotional state of an author
remains an open problem.

In this paper, we explore an approach based on
the use of genetic algorithms to optimize prompts
for for LLM-based emotion classification. We ex-
plore an alternative mutation designed to introduce
structured variability at each generation, ensuring
that mutations are aligned with patterns that have
shown potential for enhancing prompt quality. By
systematically evolving prompts without human
intervention, this method offers a robust and scal-
able solution for tasks that require accurate emo-
tional inference. While our approach is evaluated
in the context of emotion classification, its potential
applications include in contexts where optimized
prompts without human intervention are needed,
such as chatbots (Yigci et al., 2024), code genera-
tion (Chen et al., 2021), and automation of complex
tasks with LLMs (Bommasani et al., 2021).

2 Related Work

The traditional methods used for emotion classifica-
tion were lexicon-based approaches (Cambria et al.,
2017), where a predefined list of words was used to
classify sentences according to sentiment by num-

Algorithm 1 EvoPrompt Classic vs EvoPrompt SM
1: Input: Initial population of prompts P0, number of gen-

erations G, population size N
2: Output: Optimized set of prompts PG

3: Initialize population P0 with N prompts (human-crafted
+ LLM-generated)

4: for g = 1 to G do ▷ Start Evolutionary Process
5: Selection: Choose M parent prompts using tourna-

ment, wheel or random selection
6: Crossover: Generate offspring prompts via crossover

operation
7: if EvoPrompt Classic then
8: Mutation: Apply random mutation to offspring
9: Selection: Choose top N prompts based on fitness

10: else if EvoPrompt SM then
11: Selection 1: Choose top candidates for mutation

after crossover
12: Mutation: Apply structured mutation from pre-

defined set
13: Selection 2: Choose top N prompts based on

fitness after mutation
14: end if
15: Update population: Pg+1 ← selected best prompts
16: end for
17: Return final optimized prompt set PG

ber of occurrences or any other linguistic criterion.
These methods faced significant challenges related
to context dependency and polysemy, which lim-
ited their accuracy in complex texts (LeCun et al.,
2015). The advent of deep learning marked a revo-
lution, as word embeddings and transformer-based
approaches could be used to do emotion classifi-
cation. Models such RoBERTa and TS showed
superior performance compared to more traditional
approaches (Adoma et al., 2020; Kolev et al., 2022).
More recently, LLMs have shown comparable per-
formance while being more cost-effective in terms
of data and training requirements. Therefore, opti-
mizing prompts for these tasks has become a more
efficient approach (Liu et al., 2023; Imran, 2024).

The process of optimizing prompts for a lan-
guage model in an automated manner is known
as automated prompt generation. Different ap-
proaches aim to generate improved synthetic
prompts (Li et al., 2025). Biologically inspired ap-
proaches to prompt optimization treat the problem
as an evolutionary process (Shapiro, 1999). In evo-
lution, prompts are viewed as organisms, which are
managed through genetic operations such as muta-
tion or crossover over epochs. The pioneering work
in implementing an evolutionary process using an
LLM as an optimizer is EvoPrompt (Guo et al.,
2023). In EvoPrompt a more traditional approach
to an evolutionary algorithm is proposed, in which
an evaluation function chooses the best prompts
that maximize the score of the task at hand. Other
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approaches, such as Promptbreeder, introduce a
self-referential method, where both task-prompts
and mutation-prompts evolve through a genetic al-
gorithm guided by LLMs (Fernando et al., 2023;
Chen et al., 2024).

Emotion classification using LLMs has been ex-
tensively explored in recent studies. Various ap-
proaches have reshaped the way LLMs are em-
ployed for this task. Specifically, we can divide
these efforts into two main categories: those that
fine-tune LLMs for emotion classification tasks
(Zhang et al., 2023; Liu et al., 2024) and those
that leverage LLMs’ inherent ability to detect emo-
tions, assessing their performance across differ-
ent contexts solely through prompt optimization
(Venkatakrishnan et al., 2023; Peng et al., 2024).
In both contexts, an automated approach to find op-
timal prompts for emotion classification is a highly
desirable need. Therefore, this study explores an
alternative framework that mitigates the stochastic
nature of genetic algorithms by changing the way
mutations are performed.

3 Methodology

To tackle the problem, we propose a solution based
on LLMs using a zero-shot/few-shot approach. As
previously discussed, selecting the optimal prompt
is challenging and directly impacts LLM perfor-
mance. We employed a genetic algorithm to op-
timize prompts through an evolutionary process
customized to the requirements of the task.

The overall structure follows a classical genetic
algorithm approach, where prompts undergo itera-
tive selection, crossover, and mutation to improve
a fitness function. The distinction between random
mutations (classical EvoPrompt) and systematic
mutations (our approach) is visually depicted in
Figure 1, highlighting the key differences between
both strategies. The step-by-step process is out-
lined in Algorithm 1.

The process begins with an initial population
of 2n prompts, comprising both human-crafted
prompts, manually designed based on linguistic
heuristics and task-specific considerations, and
those generated by GPT-4o. All initial prompts are
evaluated individually. The elements then enter the
evolutionary cycle, following an approach similar
to EvoPrompt, which utilizes a classical genetic al-
gorithm. Prompt selection is performed using three
different methods: tournament selection, roulette
wheel selection, and random selection.

Once a pair of parent prompts is selected, a
crossover operation is applied resulting in a child
prompt. After all crossover operations, the top n
prompts are evaluated and selected for the next
generation. This process is iterated for a predeter-
mined number of epochs using the top n prompts.
The prompts from the final epoch are expected to
be superior to those from the initial population.
The typical range in which we use our approach is
10 ≤ n ≤ 30. For this work we use n = 10. The
optimization process was run for 10 epochs due to
computational limitations.

The prompts are evaluated using the same LLM
as the fitness function. The main idea is to itera-
tively refine the prompts generated during evolu-
tion, as these prompts are directly used to perform
the emotion detection task. Each prompt is evalu-
ated over the validation set of the dataset by calcu-
lating the F1 score for its predictions. The selection
process is detailed in Algorithm 1. The process is
run for each sentiment independently. Predictions
are made through a discrete prompting setup: the
LLM is asked to make a binary decision using pre-
specified target words. Initially, the words used
are positive and negative, where the model pre-
dicts the presence or absence of a target emotion
in a sentence. To further understand the sensitiv-
ity of the evaluation, we include an ablation study
where the target words are replaced with present
and absent, and analyze the resulting impact on
prompt performance.

3.1 Mutation Strategy: Random vs
Systematic Evolution

In classical genetic algorithms, mutations are typ-
ically random perturbations that introduce uncon-
trolled variations that could enhance performance.
However, this mutation approach often fails to pro-
duce the desired effect. The stochastic nature of
random mutations reduces the likelihood of gener-
ating beneficial variations tailored to the specific
task at hand.

To overcome this limitation, our approach re-
places random mutations with systematic muta-
tions, designed to introduce structured linguistic
variation in each generation. Rather than relying on
stochastic modifications, our model selects transfor-
mations from a predefined set, ensuring that each
mutation follows linguistic optimization principles.
Each type of mutation is validated to have a pos-
itive impact on performance, avoiding disruptive
changes that could degrade the prompt’s effective-
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Emotion Best Prompt Macro F1-Score
Anger Analyze if the sentence expresses anger [...] identify indicators of

hostility [...] examining language, structure, or context.
0.4309

Fear As a Linguistic Analyst, classify phrases that create unease or fear
[...] identify specific words contributing to a nervous or tense tone.

0.7734

Joy Identify happy words in this sentence. 0.7221
Sadness Assess if the sentence conveys gloom or sorrow [...] identifying

words that contribute to a somber tone.
0.6667

Surprise Does the sentence contain a surprising event or plot twist [...]
creating shock or astonishment?

0.5251

Table 1: Best performing prompt per emotion with corresponding Macro F1-score.

ness. By aligning mutations with known patterns
that enhance LLM interpretability and task adap-
tation, this deterministic approach improves con-
vergence speed, reduces variance in performance
across generations, and ensures a more consistent
refinement of prompts. Unlike random mutations,
which may generate unproductive or even detrimen-
tal variations, structured modifications incremen-
tally optimize the prompt space, leading to a more
stable and efficient evolutionary process.

The structured mutations:

• Context Specification: Clarifies and refines
the prompt’s focus.

• Lexical Reformulation: Rewords prompts
while preserving meaning.

• Profiling: Adapts prompts based on prede-
fined linguistic traits.

• Simplification: Reduces complexity for
clearer interpretation.

By controlling each mutation, we enhance repli-
cability while preserving diversity in the evolution-
ary search space. The comparative impact of sys-
tematic versus random mutations is discussed in
more detail in Figure 1.

3.2 Experimental Setup
The model used for evaluation tasks, crossover gen-
eration, and systematic mutations is Llama 3.1 8B.
The implementation was carried out using PyTorch
with the transformers library from Hugging Face
(Wolf et al., 2020), leveraging the bitsandbytes
library for optimized inference in low-precision
configurations (Dettmers et al., 2022).

The model is executed in an 8-bit quantized
configuration, which significantly reduces mem-
ory consumption and computational requirements

while maintaining comparable performance to full-
precision models (Frantar et al., 2022). The execu-
tion hardware consists of two NVIDIA Titan RTX
graphics cards with 24 GB of DDR6 memory,
hosted by the Supercomputing Laboratory of the
Bajío, located at the Center for Research in Mathe-
matics (CIMAT), Guanajuato, Mexico (Centro de
Investigación en Matemáticas A.C, n.d.).

4 Results and Discussion

The model was executed using the random muta-
tion configuration, following an approach similar to
EvoPrompt. This was done to compare the results
obtained with the proposed systematic mutation
model. Likewise, the systematic mutation model
was executed, and its results are presented in Table
3. Table 2 shows the results using the validation
dataset for English solely. The performance of the
initial Llama model with a generic initial prompt is
compared, along with the classical EvoPrompt ap-
proach and EvoPrompt with systematic mutations.

One of the best-performing prompt was from
the joy category (Table 1), specifically: Identify
happy words in this sentence. The notable aspect
of this prompt is that it resulted from a systematic
mutation. All prompts in that population gener-
ally had low scores (Macro F1-Score ∼ 0.55), and
even after evolution, the validation score only im-
proved slightly (Table 2). The reason this prompt
achieved such a high score is that it aligns closely
with the dataset’s focus on the author’s perceived
emotion. The prompt guides the language model
to identify linguistic patterns that reflect the au-
thor’s emotional state, as identifying happy words
is more related to the expressed emotion than to
the perceived emotion.

This reasoning explains the overall structure of
the best-performing prompts for fear and joy, as
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Emotion Anger Fear Joy Sadness Surprise
Llama Initial [0.5941,

0.6170]
[0.6522,
0.6955]

[0.5401,
0.5452]

[0.6477,
0.6697]

[0.6064,
0.6720]

Llama EvoPrompt [0.6397,
0.6470]

[0.7395,
0.7522]

[0.5401,
0.5452]

[0.6842,
0.6892]

[0.7108,
0.7225]

Llama EvoPrompt
SM

[0.6528,
0.6602]

[0.7546,
0.7676]

[0.5533,
0.8131]

[0.6982,
0.7033]

[0.7253,
0.7372]

Table 2: Validation F1-score range [min,max] per emotion category. The values represent the Macro F1-score
per emotion, calculated on the validation set. The range corresponds to the results of the final epoch for Llama
EvoPrompt and Llama EvoPrompt SM (Systematic Mutation). In the case of the initial model evaluation (Llama
Initial), it refers to the range of values obtained from the initially evaluated prompts.

Emotion EvoPrompt
Modified

EvoPrompt
Original

Anger 0.4309 0.4223
Fear 0.7734 0.7579
Joy 0.7221 0.7077
Sadness 0.6667 0.6534
Surprise 0.5251 0.5146
Macro F1 0.6236 0.6111
Micro F1 0.6571 0.6440

Table 3: Comparison between EvoPrompt Original and
Modified. All values correspond to the F1-score metric.
These results were part of the official SemEval submis-
sion.

well as the lower performance observed for anger,
sadness, and surprise. The prompts obtained for
these emotions share a common approach of search-
ing for the emotion within the sentence, making
them more suitable for detecting the emotion per-
ceived by the reader.

These findings underscore the potential of sys-
tematic mutations, which, relying solely on prompt
engineering assumptions, produced targeted mod-
ifications. This approach generated prompts that
effectively identified task-relevant patterns, surpass-
ing the EvoPrompt method, where random muta-
tions failed to yield superior results. This suggests
that replacing stochastic mutations with structured
linguistic modifications enhances both effective-
ness and consistency in prompt generation, leading
to improved overall performance.

Another possible explanation for the model’s
success in prediction could come from a class im-
balance. From the dataset paper (Muhammad et al.,
2025a), we know that the most represented emotion
is fear, while the least represented is anger, which
aligns with the results obtained in Table 3. How-
ever, joy is the second least represented emotion

Figure 2: Survival rates of prompts based on the applied
mutation type. The rates represent the percentage of
prompts that survived the selection process after each
specific mutation was applied, aggregated across all
emotion categories.

and still achieved the second-best score, which chal-
lenges this explanation. Additionally, reinforcing
this point, the results in Table 4 show that under the
alternative evaluation, the surprise class performed
worse, even though it has similar representation to
the sadness class, which achieved a higher score.

4.1 Mutation Success Analysis

To better understand the internal dynamics of our
evolutionary process, we analyzed the survival
rates of different mutation types across generations.
Figure 2 shows the percentage of surviving prompts
after applying each mutation type. The most suc-
cessful mutation was context specification,
followed by simplification, while lexical
reformulation exhibited the lowest survival rates.
These results suggest that mutations focusing on
refining the task specification were more effective,
whereas mutations that altered the way the model
is addressed tended to be less successful.
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4.2 Evaluation Ablation Study

As mentioned in the methodology, the evaluation
method was carried out using the same language
model. The results presented in Table 3, corre-
sponding to the official competition submission,
the tokens positive and negative were used as
target tokens. However, it is possible that these to-
kens introduce issues when detecting certain emo-
tions, since restricting the prediction to positive
or negative biases emotions like anger or surprise,
which are not easily distinguishable with only these
two labels. For this reason, a second study was con-
ducted using different tokens present and absent,
which are more aligned with the dataset’s design
and the task of predicting the emotion itself. The
idea was that they would better capture whether
the emotion was present or not. The results ob-
tained are shown in Table 4. Comparing the two
evaluations, the second approach clearly achieves
superior performance, demonstrating a significant
impact of this adjustment on the model.

Emotion EvoPrompt
Modified

EvoPrompt
Original

Anger 0.6909 0.6557
Fear 0.7568 0.6176
Joy 0.7593 0.7600
Sadness 0.7550 0.7381
Surprise 0.6625 0.5967
Macro F1 0.7249 0.6736
Micro F1 0.7451 0.6781

Table 4: EvoPrompt Modified evaluated using an alter-
native evaluation approach. All values correspond to
the F1-score metric. These results were not included in
the official SemEval submission.

5 Conclusion

This study introduced a novel approach for optimiz-
ing prompts via systematic mutations guided by ge-
netic algorithm principles. By replacing stochastic
mutations with structured linguistic modifications,
the proposed method enhanced prompt effective-
ness and consistency, leading to superior perfor-
mance across all emotion categories. Notably, the
improvements in joy and fear suggest that aligning
mutations with underlying linguistic patterns can
significantly impact classification accuracy. These
findings highlight the potential of systematic mu-
tation strategies in prompt engineering, paving the
way for more efficient and automated optimization

techniques in LLM-driven emotion classification.
Future work could explore refining mutation strate-
gies further and extending this approach to other
NLP tasks.

Limitations

This study has some limitations that should be
taken into account for future improvements. First,
the optimization process was limited to ten itera-
tions due to time and computational constraints.
This probably restricted the potential of the model,
especially in emotions such as anger, sadness, and
surprise, where it is more difficult to capture subtle
linguistic patterns. With more iterations and more
precise and above all perhaps somewhat more deter-
ministic mutation rules, performance could be im-
proved, especially by generating messages capable
of detecting emotional nuances more effectively.

Second, the systematic mutations were designed
based on general prompt engineering assumptions,
which may not fully capture the complexity of all
linguistic expressions. Furthermore, the evalua-
tion was performed only on the SemEval Task 11A
dataset, which limits the generalizability of the re-
sults. It is important to test the method on datasets
with different annotation schemes and language
models to assess its robustness. Future work could
also explore integrating other prompt tuning tech-
niques for a more complete comparison.
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