FunghiFunghi at SemEval-2025 Task 3: Mu-SHROOM, the Multilingual
Shared-task on Hallucinations and Related Observable Overgeneration
Mistakes

Tariq Ballout Pieter Jansma

Nander Koops Yong Hui Zhou

University of Groningen, The Netherlands

{t.ballout, p.jansma.1l, n.koops.1, y.h.zhou}@student.rug.nl

Abstract

Large Language Models (LLMs) often gener-
ate hallucinated content, which is factually in-
correct or misleading, posing reliability chal-
lenges. The Mu-SHROOM shared task ad-
dresses hallucination detection in multilingual
LLM-generated text. This study employs
SpanBERT, a transformer model optimized for
span-based predictions, to identify hallucinated
spans across multiple languages. To address
limited training data, we apply dataset augmen-
tation through translation and synthetic gen-
eration. The model is evaluated using Inter-
section over Union (IoU) for span detection
and Spearman’s correlation for ranking consis-
tency. While the model detects hallucinated
spans with moderate accuracy, it struggles with
ranking confidence scores. These findings high-
light the need for improved probability calibra-
tion and multilingual robustness. Future work
should refine ranking methods and explore en-
semble models for better performance.

1 Introduction

Large Language Models (LLMs) are widely used in
Natural Language Processing (NLP) applications,
including text generation, summarization, and con-
versational Al (Fan et al., 2024). However, they
often generate hallucinated content, information
that appears plausible but is incorrect or misleading.
These hallucinations pose challenges in ensuring
the reliability and factual consistency of generated
text (Ji et al., 2023).

Detecting hallucinations becomes more difficult
in multilingual settings. Variations in grammar,
vocabulary, and training data across languages af-
fect a model’s ability to identify and rank halluci-
nated spans consistently (Kang et al., 2024). Low-
resource languages tend to exhibit higher halluci-
nation rates due to limited training data, whereas
high-resource languages, such as English, may ben-
efit from more extensive supervision. Addressing
these challenges requires models that generalize

across languages while maintaining effective hallu-
cination detection capabilities.

The Mu-SHROOM shared task' aims to advance
research in multilingual hallucination detection.
Participants are required to identify hallucinated
spans in LLM-generated text across multiple lan-
guages by multiple models. The evaluation relies
on two key metrics: Intersection over Union (IoU)
to measure span detection accuracy and Spear-
man’s correlation to assess the consistency of hal-
lucination confidence scores. The task presents
challenges, including variations in hallucination
patterns across languages and the need for proba-
bility calibration to improve ranking reliability.

In this study, we present a SpanBERT-based
approach for hallucination detection. SpanBERT
(Joshi et al., 2020), a transformer model optimized
for span-based predictions, is well-suited for identi-
fying hallucinated text segments. Due to the limited
availability of training data, we incorporate dataset
augmentation through translation and synthetic
data generation. Our results indicate that while
our model detects hallucinated spans with reason-
able accuracy, it struggles with ranking consistency,
as reflected in low or negative Spearman’s correla-
tion scores. These findings highlight the need for
improved probability calibration techniques and
enhanced model robustness across languages.

The remainder of this paper is structured as fol-
lows: Section 2 reviews related work on halluci-
nation detection and multilingual evaluation. Sec-
tion 3 details the Mu-SHROOM task and dataset,
including our data augmentation approach. Sec-
tion 4 describes our methodology, covering model
selection, preprocessing, and training setup. Sec-
tion 5 presents the experimental setup. Section 5.3
provides a combined discussion and interpretation
of the results. Finally, Section 6 summarizes key
findings and outlines directions for future research.

"https://helsinki-nlp.github.io/shroom/

1602

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1602-1608
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

2 Related Work

Hallucination detection in LLMs is a well-known
problem, where models generate factually incorrect
or misleading information. Detecting these errors is
important for improving the reliability of generated
text (Luo et al., 2024).

In this section, we discuss prior work on evalua-
tion metrics, hallucination detection, and multilin-
gual challenges. Existing approaches range from
sentence-level classification to span-level annota-
tion, with multilingual settings introducing addi-
tional complexities.

Hallucination Detection in Large Language
Models Kang et al. (2024) compare different hal-
lucination detection metrics in multilingual settings.
Their study finds that Natural Language Inference
(NLI)-based methods often perform better than lex-
ical overlap measures like ROUGE (Lin, 2004).
However, these methods struggle with detecting
fine-grained hallucinations at the span level, which
is a key focus of Mu-SHROOM.

Shen et al. (2024) introduce a dataset for detect-
ing hallucinations in news headlines across multi-
ple languages. Their work includes fine-grained
annotations, showing that different hallucination
types require different detection strategies. This
aligns with Mu-SHROOM’s goal of identifying
hallucination spans, though our task focuses on
LLM-generated text rather than news headlines.

Multilingual Hallucination Detection and Eval-
uation Most hallucination detection research fo-
cuses on English, but hallucinations occur differ-
ently across languages. Detecting hallucinations
in multilingual settings is more complex due to
variations in grammar, entity representation, and
knowledge availability.

Guerreiro et al. (2023) study hallucinations in
multilingual translation models, showing that low-
resource languages are more likely to produce hal-
lucinated content. They highlight the need for
language-specific approaches to hallucination de-
tection, as models may behave differently depend-
ing on the training data. Mu-SHROOM builds on
this by providing a multi-lingual dataset that eval-
uates hallucination detection across various lan-
guages and public LLMs.

3 Task Description and Datasets

This section outlines the Mu-SHROOM task and
dataset. We describe the task of detecting hallu-

cinated spans in multilingual LLM outputs and
explain dataset augmentation through translation
and synthetic data generation.

3.1 Task Description

The Mu-SHROOM task focuses on detecting hal-
lucinated spans in text generated by LLMs. The
organizers define hallucinations as content that con-
tains or describes facts that are not supported by the
provided reference. In other words, hallucinations
occur when the answer text is more specific than
it should be, given the information available in the
provided context. Figure 1 shows an example of a
hallucination.

ID val-en-4

Language English (EN)

Model Input When did Chance the Rapper de-
but?

Model Output Chance the Rapper debuted in
2011.

Model ID titnae/falcon-7b-instruct

Soft Labels

Start—End Probability

18-29 0.0909

29-33 0.5455

Hard Labels [29, 33]

Figure 1: Example of a hallucination in the English
validation file.

The goal is to determine which parts of an LLM-
generated output contain hallucinations. The task is
multi-lingual and multi-model, with data provided
by the organizers in multiple languages and from
various open-weight LLMs. The provided data
includes:

* Language: English, Chinese, Swedish, Span-
ish, German, Hindi, Finnish, Arabic, Italian,

or French.

* Model: LLM model, such as Qwen, Llama,
or Mistral.

* Raw text: a string of characters.
* Tokenized representation: a list of tokens.

* Logits: model confidence scores.

1603

* Soft Labels: Probability-based (how likely it
is a hallucination)

* Hard Labels: Binary (hallucination or not)

For each character in the output, the probability
of it belonging to a hallucinated span must be com-
puted. Any approach, including external resources,
can be used, and there is flexibility in selecting
which languages to focus on.

3.2 Dataset Augmentation

We received validation files containing 50 output
sentences in various languages. To expand the train-
ing data, we translated the non-English validation
files that had the most similar linguistic structure
to English, specifically German, French, Swedish,
Spanish, and Italian. The translations were gener-
ated using the GPT-40-mini model via the OpenAl
API with a prompt detailed in Appendix A.1.

In addition to translated data, we generated syn-
thetic data using GPT-40-mini. This was done by
providing the model with a few examples from
the validation set along with additional question-
answer pairs. The prompt used for this process is
described in Appendix A.2. Both prompts resulted
in a total of 200 additional question-answer pairs.

4 Methodology

4.1 SpanBERT

For this task, we used the pre-trained SpanBERT
model for span detection (Joshi et al., 2020). Span-
BERT was chosen because of its unique training
process compared to other BERT models. Dur-
ing training, SpanBERT masks entire spans of text
rather than individual tokens, enabling it to better
understand contextual spans. This makes it particu-
larly useful for tasks like span prediction. Addition-
ally, SpanBERT was trained on question-answering
datasets, which closely resemble the structure of
our data and task requirements.

4.2 Data

To fine-tune the model, several data files were used.
The initial dataset only contained 50 samples per
language, which was insufficient for effective fine-
tuning. As mentioned in Section 3.2, we lever-
aged additional data from Germanic and Romance
languages; French, Spanish, Swedish, and Italian,
by translating these texts into English. This step
enriched the dataset with moe data and was in-
tended to help the model better understand these

languages’ structures, even if it had not been ex-
plicitly trained on them. Additionally, as described
earlier, we utilized the GPT-40-mini model to gen-
erate more question-answer samples. In total, the
model was trained on 450 question-answer pairs.
To further enhance data quality, we removed
special tokens from the text. These tokens, such
as '<lendoftextl>’, *<0x0A>’, <im_endI>’, *</s>’,
and ’<leot_idI>’, introduced noise without provid-
ing meaningful information. By stripping these
tokens, we ensured cleaner input for the model.

4.3 Offset Mapping

The span annotations in the dataset were provided
as character-level positions, indicating where hal-
lucinated spans start and end in the text. How-
ever, since SpanBERT operates on tokenized inputs,
these character-level spans had to be converted to
token-level spans. To achieve this, we used the
tokenizer’s offset mapping.

During tokenization, SpanBERT records the
character boundaries for each token in the text. For
example, tokenizing the phrase "An example" pro-
duces the offset mapping shown in Figure 2.

Token | Offset Mapping
An 0,2)
example (3,10)

Figure 2: Offset mapping for the phrase "An example"

For each span in the hard labels, we matched the
character positions to their corresponding tokens by
checking whether a token’s character boundaries
included the start or end of the span. For example,
if the span annotation is (0, 10), the offset mapping
indicates that "An" marks the start and "example”
marks the end of the hallucinated span.

To efficiently locate the start and end tokens
based on character indices, we used list compre-
hension. In cases where a valid token span could
not be found, such as when the span exceeded the
text length, we assigned a default position of 0.
This ensured that the model could process the input
without errors during training.

4.4 Data Loader

A custom PyTorch dataset was developed to handle
the complex structure of multiple spans per text.
This dataset stored the tokenized inputs along with
their span labels. A custom data collator was used
to prepare batches during training. The collator

1604

calculated the maximum number of spans across
samples in a batch, padded the span positions, and
stacked input tensors to ensure uniformity.

4.5 Training Setup

For this task, we used the
SpanBERT/spanbert-base-cased model from
the Hugging Face Transformers library 2. We opted
for the base version instead of the large model
due to limited GPU computational resources. To
balance training speed and resource usage, a batch
size of 8 was selected. The learning rate was set
to 3e-5, and the number of epochs was capped at
20. However, early stopping was implemented,
terminating training when the validation loss did
not improve for two consecutive epochs. The
model typically stopped training after 9 to 11
epochs.

We used the AdamW optimizer, which is stan-
dard for transformer-based models. Additionally,
a custom loss function was implemented to handle
multiple spans. This function filtered out invalid
spans, which are predicted hallucination spans
where the start or end position falls outside the
actual text length, and computed the cross-entropy
loss for both the start and end logits. The loss was
averaged across all valid spans in each batch.

The training loop was structured as follows:
for each batch, the model received input fea-
tures including input_ids, attention_mask,
and span annotations (start_positions and
end_positions). The model performed a forward
pass, generating probabilities for each token being
the start or end of a hallucinated span. The custom
loss function then compared the predicted logits
with the ground truth spans. Invalid spans were
filtered out, and the cross-entropy loss for both
start and end logits was computed and averaged.
This loss was backpropagated through the network,
updating the model’s parameters. The AdamW op-
timizer adjusted the model’s weights accordingly.
The total training loss was accumulated across all
batches, and at the end of each epoch, the average
training loss was calculated.

4.6 Validation

During validation, the model was switched to eval-
uation mode, which disabled gradient computation
to reduce memory usage and improve performance.
The validation data was processed in batches, sim-

Zhttps://huggingface.co/SpanBERT/spanbert-base-cased

ilar to the training process. For each batch, the
model received input features such as input_ids
and attention_mask and generated predictions
for start and end logits.

The custom loss function was applied to the vali-
dation data to compare the predicted logits with the
ground truth spans. The total validation loss was
accumulated across all batches. At the end of each
epoch, the average validation loss was calculated
by dividing the total loss by the number of batches.

To prevent overfitting, early stopping was imple-
mented. If the validation loss did not improve for
two consecutive epochs, training was terminated.
If the validation loss improved, the best loss was
updated, and the patience counter was reset.

4.7 Prediction and Evaluation Process

During the prediction phase, the model processed
the test dataset by generating start and end logits
for each token in the input text. These logits were
aggregated across multiple runs to enhance the ro-
bustness of predictions. Adaptive thresholds were
applied to dynamically determine high-confidence
span boundaries. These thresholds were calculated
based on the mean and standard deviation of the
logits for each text, filtering out low-confidence
predictions.

The decoded spans were mapped back to the
original text using offset mappings from the tok-
enizer. Only spans that met specific criteria were
retained: the start position had to precede the end
position, and the span had to fall within the bound-
aries of the text. Overlapping spans were merged to
reduce redundancy by averaging confidence scores
and adjusting boundaries. This approach produced
cleaner and more interpretable predictions.

5 Experiments

All experiments were conducted using Google Co-
lab, utilizing the free GPU (NVIDIA Tesla T4
or P100, depending on session availability). The
model training process was optimized for this en-
vironment to account for hardware limitations, in-
cluding restricted memory and compute time. This
setup facilitated efficient model testing and training
without the need for additional infrastructure.

5.1 Data Splits

The dataset was split into training and validation
with an 80/20 ratio. The training involved an itera-
tive process across multiple epochs, during which

1605

the model generated logits for span start and end
positions. A custom loss function was defined to
compute the cross-entropy loss for both start and
end logits, focusing on valid spans within each
batch. The loss was averaged across spans and
samples, and the model weights were updated us-
ing the AdamW optimizer.

The training loop incorporated early stopping
based on validation loss to prevent overfitting. At
the end of each epoch, the model’s performance
on the validation set was evaluated, and if the vali-
dation loss did not improve after a set number of
epochs, training was halted early.

5.2 Evaluation Measures

The evaluation follows the official scorer used by
the task organizers, as implemented in scorer.py.
Two metrics are used: Intersection over Union
(IoU) and Spearman’s Rank Correlation.

IoU measures the overlap between predicted and
ground truth hallucinated spans:

’Spred N Strue ‘

IoU =
’Spred U Strue‘

(1
where Spreq and Sy are the predicted and actual
spans, respectively.
Spearman’s correlation (p) evaluates the rank
correlation between predicted hallucination scores
and ground truth:

6> d?

n(n?—1) @

p=1-
where d; is the rank difference for each character,
and n is the total number of characters.

5.3 Results and Discussion

The evaluation results in Table 1 show variations
in hallucination detection performance across lan-
guages. While the model achieves reasonable span
detection accuracy, the correlation between pre-
dicted and actual hallucination scores remains low
or negative in most cases. This suggests that the
ranking of hallucination confidence scores does not
consistently align with the ground truth.

A comparison with the baseline scores in Ap-
pendix A.3 highlights the advantages and limita-
tions of our approach. Our model consistently out-
performs the baseline in IoU across all languages,
demonstrating better hallucination span localiza-
tion. However, the baseline achieves higher Spear-
man’s correlation in most cases.

The low or negative Spearman’s correlation sug-
gests that while the model can detect hallucinated
spans, it struggles to rank them accurately. This
may be due to over-prediction bias, inconsisten-
cies in training labels, or suboptimal probability
calibration.

5.4 Future Work

Future work should focus on improving probabil-
ity calibration, enhancing multilingual robustness,
and refining training data for more consistent cross-
lingual performance. While SpanBERT was suit-
able for this task, exploring alternative models or
ensemble approaches could further improve results,
albeit at a higher computational cost. Similarly,
larger models like SpanBERT-large may offer gains
but exceed our current resource limits.

Language IoU Correlation
English ~ 0.2943 0.0116
Spanish ~ 0.1616 -0.0986

Italian 0.2111 -0.2116
French 0.3095 -0.1521
Swedish 0.4156 -0.1177

Table 1: Evaluation results per language. IoU repre-
sents Intersection over Union, and Correlation repre-
sents Spearman’s correlation.

6 Conclusion

This study explores a SpanBERT-based approach
for detecting hallucinated spans in multilingual
LLM-generated text as part of the Mu-SHROOM
shared task. The results indicate that while the
model performs reasonably well in identifying hal-
lucinated spans, particularly in high-resource lan-
guages, it struggles with ranking hallucination con-
fidence scores accurately. This is reflected in low
or negative Spearman’s correlation values.

These findings suggest that while SpanBERT is
effective for span detection, further improvements
are needed for confidence ranking. Future work
should focus on refining probability calibration
techniques, improving robustness across multiple
languages, and exploring alternative training ob-
jectives that incorporate ranking-aware learning.
Additionally, ensemble approaches or fine-tuning
architectures specifically designed for multilingual
hallucination detection could further enhance per-
formance.

1606

References

Lizhou Fan, Lingyao Li, Zihui Ma, Sanggyu Lee, Huizi
Yu, and Libby Hemphill. 2024. A bibliometric re-
view of large language models research from 2017 to
2023. ACM Transactions on Intelligent Systems and
Technology, 15(5):1-25.

Nuno M Guerreiro, Elena Voita, and André FT Martins.
2023. Hallucinations in large multilingual translation
models. arXiv preprint arXiv:2305.13016.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1-38.

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the association for com-
putational linguistics, 8:64-77.

Haoqiang Kang, Terra Blevins, and Luke Zettlemoyer.
2024. Comparing hallucination detection met-
rics for multilingual generation. arXiv preprint
arXiv:2402.10496.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Junliang Luo, Tianyu Li, Di Wu, Michael Jenkin, Steve
Liu, and Gregory Dudek. 2024. Hallucination detec-
tion and hallucination mitigation: An investigation.
arXiv preprint arXiv:2401.08358.

Jiaming Shen, Tianqi Liu, Jialu Liu, Zhen Qin, Jay Pava-
gadhi, Simon Baumgartner, and Michael Bendersky.
2024. Multilingual fine-grained news headline hal-
lucination detection. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
7862-7875.

1607

https://arxiv.org/abs/2305.13016
https://arxiv.org/abs/2305.13016
https://arxiv.org/abs/2402.10496
https://arxiv.org/abs/2402.10496
https://aclanthology.org/2024.findings-emnlp.461.pdf
https://aclanthology.org/2024.findings-emnlp.461.pdf

A Appendix

A.1 Prompt for Translating Validation Data

Translate the <language> content
of mushroom-<lang>-val.v2.jsonl
to English using Google Translate.
Provide the translated content
the same format as the original file
(mushroom-<lang>-val.v2. jsonl),

but in English.

A.2 Prompt for Synthetic Data Generation

Format:

{

"model_input_text"”: <input text>,
"model_output_text"”: <output text>,

"hard_labels"”: [<start and end indices of hallucinated spans>]

b

Guidelines:

* Use hard_labels for fabricated spans

(character-based indices).

* Leave empty ([]) for factual responses.

* Cover a variety of topics, including history,

science, trivia, and personal advice.

¢ Include factual, partially hallucinated, and
fully hallucinated responses.

¢ Maintain a ratio of 80% hallucinated and

20% factual responses.

A.3 Evaluation Comparison

Language IoU (Ours) IoU (Baseline)

Correlation (Ours)

Correlation (Baseline)

English 0.2943
Spanish 0.1616
Italian 0.2111
French 0.3095
Swedish 0.4156

0.0310
0.0310
0.0104
0.0022
0.0308

0.0116
-0.0986
-0.2116
-0.1521
-0.1177

0.1190
0.1190
0.0800
0.0208
0.0968

Table 2: Comparison of our hallucination detection
model against the Baseline (Neural). IoU represents In-
tersection over Union, and Correlation represents Spear-

man’s correlation.

1608

