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Abstract

Food safety is a critical global concern, and
automating the detection of food hazards from
recall reports can improve public health mon-
itoring and regulatory compliance. This pa-
per presents our submission for SemEval-2025
Task 9: The Food Hazard Detection Chal-
lenge. We tackle the inherent class imbalance
in this task by leveraging advanced data aug-
mentation techniques, including LLM-based
synthetic data generation, synonym replace-
ment, and back-translation.

We employ transformer-based models such as
DistilBERT, fine-tuned with these augmented
datasets, to enhance performance. Our system
achieves significant improvements, obtaining a
Macro-F1 score of 0.7882 in ST1 and 0.5099 in
ST2.1 Additionally, we analyze the impact of
augmentation strategies and compare multiple
architectures, highlighting challenges in han-
dling implicit hazards. Our findings underscore
the effectiveness of LLM-based augmentation
in addressing extreme class imbalance while
demonstrating the strengths and limitations of
transformer models in food safety applications.

1 Introduction

Ensuring food safety is a critical challenge in public
health, requiring timely detection of hazards lead-
ing to product recalls. Traditional methods rely on
manual expert analysis, which is time-consuming
and lacks scalability. Recent advances in natu-
ral language processing (NLP) have enabled au-
tomated food hazard detection from recall reports,
improving regulatory oversight. However, class im-
balance in real-world datasets, where some classes
are overrepresented, remains a challenge for accu-
rate predictions (Gao, 2020).

SemEval-2025 Task 9: The Food Hazard De-
tection Challenge focuses on classifying food haz-
ards and products from textual reports (Randl et al.,

1Our Code: https://github.com/msaadg/hu_
semeval_task9

2025). This task is crucial for enhancing food se-
curity and public health interventions. It consists
of two subtasks:

• ST1: Classifying the hazard category and
product category.

• ST2: Identifying the exact hazard and exact
product mentioned in the report.

The primary challenge of this task is the extreme
class imbalance, where certain classes appear far
more frequently than others. Figure 1 illustrates the
severity of class imbalance through a probability
distribution.

Figure 1: Distribution of classes by hazard-category,
product-category, hazard, and product

We propose a transformer-based model aug-
mented with synthetic data from LLMs like GPT-
4o, Gemini Flash 1.5, and T5 to address this imbal-
ance. Our approach leverages DistilBERT, which
has proven effective in handling class imbalance,
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and fine-tunes it on both original and augmented
datasets.

Our system ranked 5th in ST1 and 4th in ST2.
Despite these achievements, challenges persist in
identifying implicit hazards and dealing with highly
imbalanced categories, which require further refine-
ment (Henning et al., 2023). The results confirm
that data augmentation plays a key role in overcom-
ing class imbalance.

The dataset provided by the SemEval-2025 or-
ganizers contains structured recall reports sourced
from food regulatory bodies. It consists of:

• Training Data: 5,082 samples.

• Validation Data: 565 samples.

• Test Data: 997 samples.

• Hazard Categories: 10

• Product Categories: 22

• Hazards: 128

• Products: 1,142

Each report includes ‘year’, ‘month’, ‘day’, ‘coun-
try’, ‘title’, ‘text’, ‘hazard-category’, ‘product-
category’, hazard, and product. During preprocess-
ing, we merged ‘title’ and ‘text’ into a unified field
‘title_text’ to enhance contextual representation.

2 Related Work

The challenge of food hazard detection has been ex-
tensively studied, with recent advancements lever-
aging Natural Language Processing (NLP) for au-
tomated risk assessment. Traditional approaches
have primarily relied on rule-based methods and
handcrafted feature extraction, which often fail to
generalize across diverse recall reports. Accord-
ing to (Gao, 2020), while these methods have been
widely used, they struggle with the complexity and
scale of modern datasets. More recently, deep learn-
ing models, particularly transformers, have demon-
strated superior performance in food safety classifi-
cation tasks, significantly outperforming traditional
methods (Buyuktepe et al., 2025).

2.1 Food Hazard Detection Using NLP
Food safety monitoring requires extracting key
hazard-related information from unstructured recall
reports. Earlier work focused on keyword-based ex-
traction and ontology-driven approaches. However,

with the advent of deep learning, transformer-based
architectures like BERT and DistilBERT have en-
abled more accurate hazard classification, as seen
in recent studies (Zhou et al., 2020). These mod-
els offer improved flexibility and performance over
rule-based methods, as they can capture seman-
tic nuances in text. Our work builds upon these
advancements by tackling the extreme class imbal-
ance inherent in food recall datasets, an issue that
has been discussed in the context of NLP-based
food safety applications (Gao, 2020).

2.2 Handling Class Imbalance in NLP

Class imbalance poses a significant challenge in
multi-class NLP classification, particularly when
dealing with underrepresented categories. Accord-
ing to (Henning et al., 2023), traditional methods
like oversampling and undersampling often lead
to overfitting and loss of information, which can
negatively impact model performance. More re-
cently, synthetic data augmentation has emerged as
a promising solution to this issue. Studies such as
(Meng et al., 2020) and (Gao, 2020) have demon-
strated the efficacy of techniques like contextual
augmentation, back-translation, and paraphrasing
in mitigating class imbalance. Our approach ex-
tends this by leveraging Gemini Flash 1.5 and GPT-
4o for targeted LLM-based augmentation, generat-
ing diverse synthetic data to improve model gener-
alization, particularly for rare hazard categories.

2.3 Explainability in Food Safety NLP

Explainability is critical in automated food safety
monitoring, ensuring transparency and trustwor-
thiness. According to (Ribeiro et al., 2016), tech-
niques like LIME and SHAP provide insights into
how machine learning models make predictions.
However, these techniques often struggle with im-
plicit hazard detection, particularly for rare or un-
derrepresented classes. Our experiments in ST2
confirm the said limitations, with (Pavlopoulos
et al., 2022) highlighting similar challenges when
interpreting complex models in the food hazard
domain. These findings emphasize the need for
alternative interpretability methods, which we ex-
plore further in our work.

3 System Overview

In this section, we present our methodology for
tackling the task. As mentioned earlier, the pri-
mary challenge of this task lies in the severe class
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imbalance in both hazard and product categories,
which hinders model generalization (Gao, 2020).
Additionally, implicit relationships between haz-
ards and products pose an extra layer of complexity
(Henning et al., 2023). To address these issues,
we integrated transformer-based models with di-
verse data augmentation strategies and applied a
series of training optimizations to enhance model
performance.

3.1 Data Augmentation Strategies

Given the highly skewed distribution of hazard and
product categories, where several classes appear
fewer than ten times in the dataset (see Appendix
A), we employed multiple augmentation techniques
to enrich data diversity and improve classifica-
tion robustness. As noted by (Gao, 2020), aug-
mentation techniques like synonym replacement
and back-translation have been proven to allevi-
ate class imbalance. The augmentation strategies
included synonym & contextual replacement, back-
translation, paraphrasing and large language model
based synthetic data generation. Synonym & con-
textual replacement was implemented using the
NLTK WordNet, where at most 5 words in the text
were replaced with contextually appropriate syn-
onyms (Meng et al., 2020). Back-translation was
performed using French and German translations to
generate alternative textual representations while
preserving semantic consistency, on texts where
the class count was under 50 for ST1 and under 20
for ST2. T5-base was used to paraphrase sentences
for classes with less than 30 entries in the original
training dataset, so that alternative formulations
of the text were generated while maintaining the
original meaning and retaining the classes. The
augmented dataset had at least 30 entries for each
class of hazard and product. Furthermore, we em-
ployed state-of-the-art LLMs like Gemini Flash 1.5,
GPT-4o & o1-mini for their diverse text-generation
capabilities to synthesize recall reports for classes
with less than 50 entries in the original dataset such
that each class has at least 50 entries in the aug-
mented dataset. This significantly expanded the
training dataset while also diversifying the kind of
texts for each class. This approach aligns with stud-
ies where LLM-based data augmentation has been
shown to improve generalization in imbalanced
datasets (Zhou et al., 2020).

To quantify the contribution of each augmenta-
tion technique, we report the distribution of aug-

mented samples generated for ST1 and ST2. For
ST1, synonym and contextual replacement, back-
translation, and LLM-based synthetic data gener-
ation were applied to address class imbalance in
hazard and product categories. For ST2, similar
techniques were used, with additional emphasis on
paraphrasing via T5-base to enhance fine-grained
hazard and product identification. The total num-
ber of samples after augmentation was 15,570 for
ST1 and 63,082 for ST2, expanding the original
5,082 training samples. Table 1 summarizes the
count-wise distribution of samples from each aug-
mentation technique for both subtasks.

To ensure the integrity of the augmented dataset,
as detailed in Table 1, all augmented samples under-
went human verification to eliminate label leakage
and maintain data consistency. The augmented data
was carefully merged with the original dataset, fol-
lowing a structured approach to avoid overfitting on
artificial samples, which is a common issue when
synthetic data is introduced (Shorten et al., 2021).
Figure 2 shows the balanced class distribution after
data augmentation.

Figure 2: Final Distribution of Classes after Augmenta-
tion

3.2 Model Architectures

We experimented with multiple transformer archi-
tectures to determine the most effective model
for both subtasks. Initially, we used ‘bert-base-
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Table 1: Distribution of Augmented Samples for ST1 and ST2 by Augmentation Technique

Augmentation Technique ST1 Samples ST2 Samples
Synonym & Contextual Replacement 4150 20,167
Back-translation 3210 1,130
Paraphrasing 0 15,036
LLM-based Synthetic Data Generation 2564 10,823
Total Augmented Samples 9924 47,156

uncased’ as our baseline, which performed very
poorly on low sample classes. Recognizing the
need for a more effective model, we explored
various transformer-based alternatives, including
RoBERTa, XLM-R, ALBERT, and Sci-BERT.
However, ‘distilbert-base-uncased’ emerged as the
most effective model across both subtasks, signif-
icantly outperforming other models. This aligns
with findings that DistilBERT has shown to out-
perform other transformer variants in tasks with
class imbalance due to its reduced computational
demands and ability to retain performance com-
parable to larger transformer models (Zhou et al.,
2020).

3.3 Training Pipeline and Optimization
Training pipelines for both subtasks incorporated
3 major steps: augmenting the data, merging aug-
mented data with original data, and finally training
the model. To further enhance model performance,
we also incorporated optimization techniques into
our pipeline, such as early stopping, class weights,
and learning rate scheduling.

Furthermore, for ST2 we experimented with en-
semble modeling by training two DistilBERT mod-
els on different random seeds and aggregating their
logits using a max-logit selection strategy (Gao,
2020). This approach enhanced model robustness,
particularly in identifying low-resource hazard and
product categories. See Appendix B to get the com-
plete overview of the pipelines for both subtasks,
respectively.

3.4 Explainability Methods
Explainability techniques such as LIME and SHAP
presented significant limitations. According to
(Ribeiro et al., 2016), LIME and SHAP are valu-
able for interpreting model predictions, but we
faced two major challenges in ST2:

• These models are resource-intensive, requir-
ing significant computational power. Prelimi-
nary tests indicated that completing one epoch

on Google Colab’s T4 GPU would take ap-
proximately 18 days, making them impracti-
cal.

• LIME and SHAP primarily identify explicit
features contributing to predictions but strug-
gle with implicit hazards. For instance, the
term “Latvian” was highlighted as the most
significant contributor to a hazard category,
but it wasn’t the actual hazard, illustrating the
models’ limitations in predicting exact haz-
ards and products.

4 Experimental Setup

The experimental setup aimed to address chal-
lenges such as class imbalance and computational
efficiency while ensuring robust training and evalu-
ation. We used Google Colab’s T4 GPU and Kag-
gle’s T4x2 GPUs for efficient fine-tuning. Our mod-
els were trained using the AdamW optimizer with a
learning rate of 5e−5, a batch size of 8, and a max-
imum of 5 epochs. Early stopping was applied to
avoid overfitting, halting training when validation
loss plateaued. To address class imbalance, class
weights were computed based on inverse class fre-
quency (see Appendix C), which helped the model
focus on underrepresented hazard and product cat-
egories (Gao, 2020). Learning rate scheduling was
applied using a linear decay schedule with a warm-
up phase, allowing for stable training convergence.

Text preprocessing involved merging the ‘title’
and ‘text’ fields into a single ‘title_text’ feature to
maximize contextual representation. Tokenization
was handled using model-specific tokenizers, like
‘AutoTokenizer’ for BERT and DistilBERT, with
input sequences truncated to 512 tokens for com-
putational feasibility. We utilized nlpaug 1.1.11 for
synonym replacement, contextual augmentation,
and back-translation, and Gemini 1.5 Flash and
GPT-4o for synthetic data generation, which helped
mitigate class imbalance (Meng et al., 2020).

Evaluation metrics included Macro-F1, with
scores calculated on both ST1 and ST2.
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5 Results & Analysis

The results of our experiments reveal a clear trend
in the impact of data augmentation and model se-
lection on performance improvements. Our final
model, ‘distilbert-base-uncased’, demonstrated sig-
nificant gains in Macro-F1 scores over the baseline
model, highlighting the effectiveness of augmen-
tation techniques in addressing severe class imbal-
ance and enhancing classification accuracy across
underrepresented classes.

5.1 Performance Gains

The baseline model, ‘bert-base-uncased’, trained
for five epochs, achieved a Macro-F1 score of
0.4965 for ST1 and 0.009 for ST2. This stark con-
trast between the two subtasks underscores the chal-
lenge of exact hazard and product detection due to
the large number of low-frequency categories. The
poor performance in ST2 highlights the difficulty
of predicting fine-grained hazard and product labels
without sufficient examples of each class. Event
extraction models, like those proposed by (Har-
rag and Gueliani, 2020), face similar challenges in
detecting rare event categories, particularly when
there is insufficient training data.

By implementing synonym replacement through
NLTK WordNet, ST1 saw a notable improvement
to 0.701, but ST2 remained largely unaffected. This
suggests that simple lexical augmentation is effec-
tive for coarse-grained classification but does not
introduce sufficient diversity for granular hazard-
product identification. The need for more diverse
augmentation strategies for fine-grained predic-
tions has been observed in previous studies as well
(Meng et al., 2020).

Then in order to augment the dataset that im-
proves score in ST-2, we made use of the infamous
encoder-decoder transformer model, t5-base, in or-
der to paraphrase the texts with more contextual in-
formation and grammatical correctness. The score,
after using this, jumped to 0.43, which suggests
that attention based mechanisms are good at retain-
ing information, while adding diversity to the texts,
which helped the model learn its characteristics
more effectively.

The introduction of LLM-based augmentation
using Gemini Flash 1.5 and GPT-4o significantly
improved performance, increasing ST1 to 0.779
and ST2 to 0.47. The synthetic samples gener-
ated by Gemini provided more varied examples
for rare categories, reducing model bias towards

majority classes. This improvement was also ev-
ident in ST2, which benefited from the increased
exposure to underrepresented hazard-product pairs.
The effectiveness of LLM-based data augmentation
for imbalanced datasets has been demonstrated in
similar domains. (Assael et al., 2022).

Further augmentation using ‘nlpaug’ techniques,
including back-translation (French and German)
and contextual synonym replacement, further en-
hanced classification performance, bringing ST1
to 0.811 and ST2 to 0.49. The introduction of
sentence-level diversity allowed the model to bet-
ter generalize beyond the original training samples,
mitigating the imbalance problem further, as seen
in studies utilizing back-translation for food safety
tasks (Shorten et al., 2021).

The final transition to ‘distilbert-base-uncased’,
trained on the fully augmented dataset, resulted in
a Macro-F1 of 0.7882 securing 5th place for ST1
and 0.5099 securing 4th place for ST2 on the test
dataset. Notably, the improvements in ST2 suggest
that increasing the diversity of samples was crucial
for extracting implicit hazard-product relationships,
reinforcing the necessity of extensive augmentation
for fine-grained classification (Zhou et al., 2020).

5.2 Error Analysis

An in-depth analysis of misclassifications revealed
that the model performed well on high-frequency
categories but struggled with extremely rare haz-
ards and products. The class imbalance led to in-
stances where certain hazards or products, despite
their unique nature, were mapped to broader, more
frequently occurring categories. For example, rare
food contaminants were often misclassified into
broader chemical hazard categories, indicating a
lack of precise decision boundaries for low-sample
classes. Similar misclassifications have been dis-
cussed in food hazard detection tasks, where rare
instances are misclassified into broader categories
(Harrag and Gueliani, 2020).

Additionally, implicit hazards presented signif-
icant challenges. Many instances of food recall
reports describe contamination or issues without
explicitly stating the hazard category. The model
struggled to infer implicit relationships between
food safety incidents and their corresponding haz-
ard types. This aligns with our earlier observations
regarding the limitations of LIME and SHAP in
capturing implicit relationships (Pavlopoulos et al.,
2022).
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Another common misclassification pattern was
observed in ST2, where highly specific hazard-
product pairs were mislabeled due to insufficient
positive training samples. Although augmentation
improved classification, the model still exhibited
difficulty in capturing the nuance of rare pairings,
reinforcing the need for further improvements in
dataset balancing strategies (Ozyegen et al., 2022).

5.3 Comparison with Leaderboard Results

While our augmentation strategies and model opti-
mizations narrowed the performance gap compared
to top systems (0.8223 for ST1, 0.5473 for ST2),
further improvements are still possible. Similar
gaps have been observed in other NLP tasks, where
augmentation and optimization were key factors
(Gao, 2020)

Key differences in approaches of top teams in-
clude:

• LLM-Enhanced Augmentation: Top teams
used DeBERTa v3 Large and RoBERTa Large
with fine-tuned LLMs (e.g., Gemini, RAG),
while our pipeline focused on Gemini Flash
1.5 and ‘nlpaug’, significantly improving mi-
nority class detection.

• Ensemble Learning: High-ranking teams
used multiple transformer models with soft
voting, while we used two ensembled Distil-
BERT models for ST2, improving robustness
but lacking the power of multiple model en-
sembles.

• Chunking and Data Representation: Some
teams experimented with chunking input data
into various token sizes, but we used a fixed
title + text representation, optimizing classifi-
cation but possibly limiting generalization.

• Fine-Tuning Strategies: Leading teams used
LoRA fine-tuning on RoBERTa-based mod-
els, whereas we focused on DistilBERT and
augmentation-centric enhancements.

While our system performed well under con-
straints, future iterations could benefit from LLM-
based retrieval mechanisms (e.g., RAG), soft voting
across multiple LLMs, and chunking strategies to
improve hazard-product representation. As noted
in Assael (2022), LLM-based reasoning could pro-
vide richer context for rare classes and implicit
relationships (Assael et al., 2022).

6 Conclusion

This work tackled the challenges of food hazard
detection in SemEval-2025 Task 9, focusing on
extreme class imbalance and enhancing model
generalization through LLM-based augmentation
(Gao, 2020). By employing a combination of con-
textualized synonym replacement, paraphrasing,
back-translation, and synthetic data generation, we
significantly improved classification performance,
particularly for low-frequency categories (Shorten
et al., 2021). Among various transformer models,
‘distilbert-base-uncased’ provided the best trade-
off between efficiency and accuracy, achieving a
final Macro-F1 of 0.7882 (ST1) and 0.5099 (ST2).
While these improvements are noteworthy, further
refinements are necessary for addressing ongoing
challenges, especially implicit hazard detection.

7 Limitations

Despite the advancements made in this work, sev-
eral limitations remain. Class imbalance continues
to be a major issue, particularly for rare hazard
and product categories, where the model still strug-
gles with suboptimal performance (Henning et al.,
2023). While data augmentation techniques have
alleviated some of the imbalance, further enhance-
ment is needed (Meng et al., 2020). Implicit hazard
detection remains an ongoing challenge, especially
when hazards are inferred rather than explicitly
stated. This underlines the need for more advanced
interpretability techniques to handle such implicit
relationships (Ribeiro et al., 2016). Additionally,
while our approach has shown improvements, in-
corporating strategies like contrastive data augmen-
tation, hierarchical classification, and ensemble
learning (Ozyegen et al., 2022) could further boost
model robustness and generalization.
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A Class Imbalance Illustration
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Figure 5: Top 20 Hazards Distribution

Figure 6: Top 20 Products Distribution

B Pipelines for ST1 and ST2
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textual Replace-
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Figure 7: Pipeline for ST1
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Figure 8: Pipeline for ST2

C Class Weights Implementation

To address the class imbalance in our dataset, we
incorporated class weights into the loss function
during training. The primary goal was to ensure
that underrepresented classes, which occur far less
frequently, were given more importance in the loss
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computation, thereby guiding the model to better
focus on these classes. This was particularly im-
portant in tasks like hazard and product category
classification, where some categories were signifi-
cantly more frequent than others.

The class weights were calculated based on the
inverse frequency of each class in the training
dataset. Specifically, for each class, the weight
was computed as the inverse of its frequency rela-
tive to the total number of samples. The weight for
class i is given by:

wi =
N

fi

Where:

• wi is the weight for class i,

• N is the total number of samples in the train-
ing dataset,

• fi is the frequency of class i.

These computed weights were then integrated
into the loss function, ensuring that the model pe-
nalized misclassifications of rare classes more than
those of more frequent ones. By doing so, we miti-
gated the effect of class imbalance and helped the
model focus on learning from the underrepresented
classes, which would otherwise be overshadowed
by the more frequently occurring classes.

This approach aligns with the findings of (Hen-
ning et al., 2023), where the use of class weights
has been shown to improve model performance
in imbalanced classification tasks by preventing
the model from being biased towards the majority
class.

By adjusting the loss function in this manner, we
were able to improve the model’s ability to detect
and classify rare hazard and product categories,
ultimately leading to better performance on both
subtasks ST1 and ST2.
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