GateNLP at SemEval-2025 Task 10: Hierarchical Three-Step Prompting for Multilingual Narrative Classification

Iknoor Singh, Carolina Scarton, Kalina Bontcheva


Abstract
The proliferation of online news and the increasing spread of misinformation necessitate robust methods for automated narrative classification. This paper presents our approach to SemEval 2025 Task 10 Subtask 2, which aims to classify news articles into a predefined two-level taxonomy of main narratives and sub-narratives across multiple languages. We propose Hierarchical Three-Step Prompting (H3Prompt) for multilingual narrative classification. Our methodology follows a three-step prompting strategy, where the model first categorises an article into one of two domains (Ukraine-Russia War or Climate Change), then identifies the most relevant main narratives, and finally assigns sub-narratives. Our approach secured the top position on the English test set among 28 competing teams worldwide. This result highlights the effectiveness of our method in improving narrative classification performance over the baselines.
Anthology ID:
2025.semeval-1.21
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
148–154
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.21/
DOI:
Bibkey:
Cite (ACL):
Iknoor Singh, Carolina Scarton, and Kalina Bontcheva. 2025. GateNLP at SemEval-2025 Task 10: Hierarchical Three-Step Prompting for Multilingual Narrative Classification. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 148–154, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
GateNLP at SemEval-2025 Task 10: Hierarchical Three-Step Prompting for Multilingual Narrative Classification (Singh et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.21.pdf