FiRC-NLP at SemEval-2025 Task 11: To Prompt or to Fine-Tune? Approaches for Multilingual Emotion Classification

Wondimagegnhue Tufa, Fadi Hassan, Evgenii Migaev, Yalei Fu


Abstract
In this paper, we describe our system devel-oped for participation in SemEval-2025 Task11: Bridging the Gap in Text-Based EmotionDetection. We compare three approaches formultilingual, multi-label emotion classification:XLM-R, an ensemble of models (XLM-5), anda prompt-based approach. We evaluate the per-formance of these models across a diverse setof languages, ranging from high-resource tolow-resource languages
Anthology ID:
2025.semeval-1.204
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1549–1556
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.204/
DOI:
Bibkey:
Cite (ACL):
Wondimagegnhue Tufa, Fadi Hassan, Evgenii Migaev, and Yalei Fu. 2025. FiRC-NLP at SemEval-2025 Task 11: To Prompt or to Fine-Tune? Approaches for Multilingual Emotion Classification. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1549–1556, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
FiRC-NLP at SemEval-2025 Task 11: To Prompt or to Fine-Tune? Approaches for Multilingual Emotion Classification (Tufa et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.204.pdf