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Abstract

The aim of this paper is to take on the challenge
of multi-label emotion detection for a variety
of languages as part of Track A in SemEval
2025 Task 11: Bridging the Gap in Text-Based
Emotion Detection. We fine-tune different pre-
trained mono- and multilingual language mod-
els and compare their performance on multi-
label emotion detection on a variety of high-
resource and low-resource languages. Over-
all, we find that monolingual models tend to
perform better, but for low-resource languages
that do not have state-of-the-art pre-trained lan-
guage models, multilingual models can achieve
comparable results.

1 Introduction

Interlocutors rarely speak in an entirely neutral
manner: more often than not, speakers will use
emotions in their speech. Emotions are an impor-
tant driving force of conversations and understand-
ing how language and emotions interact is crucial
for linguistics. In NLP, the field of Emotion Recog-
nition is concerned with identifying the emotions
of the speaker of an utterance. Ekman (1992) de-
fines six basic emotional states: joy, sadness, fear,
anger, surprise, and disgust. These have since been
used widely in emotion recognition to assign the
perceived emotion of a speaker during an utterance.

While many systems have been developed that
can assign one singular emotion to a text, the chal-
lenge of Multi-label Emotion Detection is a newer
and less investigated field. Nonetheless, it is an
important area, since speakers rarely feel emotions
in isolation and multiple emotions often occur in
conjunction with each other, for example anger and
disgust.

Track A of SemEval 2025 Task 11, "Bridging the
Gap in Text-Based Emotion Detection" (Muham-
mad et al., 2025b), aims at solving the issue of
multi-label emotion detection for 28 different lan-
guages (Muhammad et al., 2025a), including many

low-resource languages. To solve this task, our
team compares different pre-trained language mod-
els on their ability to perform multi-label emo-
tion classification, comparing monolingual models
like GottBERT (Scheible et al., 2024) and Twitter-
RoBERTa (Barbieri et al., 2020) to multilingual
models such as XLM-T (Loureiro et al., 2022).
Our aim is to see how multilingual models per-
form when they are fine-tuned solely on one lan-
guage versus multiple languages simultaneously.
This could provide important insights into max-
imizing the usability of multilingual models for
low-resource languages. We further employ task-
adaptive pre-training and optimized classification
thresholds at each epoch to improve performance.

2 Background

Early work in NLP largely focused on Sentiment
Analysis, the classification of a text into negative
or positive valence classes (Mohammad and Kir-
itchenko, 2018). In contrast, Emotion Recogni-
tion deals with assigning texts to distinct emotion
classes. Sentiment Analysis is often a case of bi-
nary classification, assigning either positive or neg-
ative valence to a text. Emotion Recognition is
often implemented as a multi-class classification
problem, selecting the most salient emotion out of
multiple emotion classes. However, a multi-class
approach neglects the co-occurrence of emotions
that cannot be separated from each other (Moham-
mad and Kiritchenko, 2018). This type of relation
requires a multi-label strategy. Furthermore, most
existing multi-label emotion classifiers focus on
high-resource, predominantly Indo-European lan-
guages such as English, with fewer systems avail-
able for low-resource languages.

Earlier approaches to multi-label emotion recog-
nition employed classifier chains to account for
the correlation between the different emotions. For
instance, participants of SemEval 2018 Task 1 com-
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bined their best performing classifier for every emo-
tion into a chain which passes the predicted labels
to the next classifier in the chain, sorting the clas-
sifiers by performance (highest to lowest). Their
best performing classifier chain achieved a macro-
averaged F1 score of 0.493 (De Bruyne et al.,
2018).

More recent approaches involve Latent Emotion
Memory networks, which aim at learning the latent
emotion distribution and emotion intensity in a text
and leverage it into a classification system. These
consist of a variational auto-encoder that learns the
emotion from the input and a memory unit that cap-
tures the most salient features for that emotion. On
the SemEval 2018 dataset, they achieved a macro
F1 score of 0.567 (Fei et al., 2020).

Other systems include the Sequence-to-Emotion
(Seq2Emo) approach, which is essentially a
sequence-to-sequence model that encodes the ut-
terance using an LSTM and then uses an LSTM-
based decoder to perform binary classification on
the emotions sequentially. This approach achieved
a macro F1 score of 0.5192 on the SemEval 2018
dataset (Huang et al., 2021).

Since then, the rise of pre-trained language mod-
els and transformer-based architectures has opened
up a variety of new ways to approach multi-label
emotion detection. However, it is still unclear
which pre-trained models are well suited for emo-
tion detection, and how to best fine-tune models for
this task. A further open question is how to build
multilingual models that can perform emotion de-
tection in a variety of languages.

This is the aim of our approach: We compare
several monolingual and multilingual pre-trained
language models and fine-tune them for emotion
classification, comparing the pre-trained models
to a logistic regression baseline. The following
sections will explore the different systems that we
have tried and their respective results.

3 System Overview

For our system, we mainly rely on the XLM-
Twitter (XLM-T) base model for sequence classifi-
cation (Barbieri et al., 2022), which continues pre-
training from a publicly available XLM-R check-
point (Conneau et al., 2020) using nearly 200M
tweets from over 30 languages. We then apply
different fine-tuning strategies and observe the ef-
fects on model performance. Additionally, we con-
trast the performance of a multilingual model like

XLM-T with specialized monolingual models for
German and English. Due to time and resource con-
straints, we only analyze a subset of 10 languages
that includes both high-resource and low-resource
languages: Afrikaans, Amharic1, Algerian Arabic,
Moroccan Arabic, Mandarin Chinese, German, En-
glish, Spanish, Hausa, and Hindi. We use the train-
ing, development, and test datasets provided by
the SemEval2025 Task 11 organizers (Muhammad
et al., 2025a; Belay et al., 2025).

3.1 Linear Baseline
Nowadays, traditional machine-learning algo-
rithms such as Logistic Regression or Ran-
dom Forests are often overlooked in favour of
transformer-based architectures. Nonetheless, their
cost-effectiveness and explainability make them
an interesting baseline that can provide a useful
reference point for evaluating transformer-based
approaches.

For our baseline, we convert the input texts into
sparse tf-idf vectors and train a Logistic Regression
classifier using the One-vs-Rest (OVR) multiclass
strategy. This strategy consists of training one bi-
nary classifier independently for each label – each
classifier fits the current label against all the other
labels.

When running our experiments, this simple base-
line achieved an F1 score similar to XLM-T for 4
out of 10 languages and even outperformed it for
Hausa (see Table 1).

3.2 Fine-tuning monolingual models
To better contextualize the performance of the mul-
tilingual XLM-T, we fine-tune a specialized, fully
monolingual model for German and English respec-
tively. Due to its well-suitedness to the task data,
we chose Twitter-RoBERTa (Loureiro et al., 2022)
for English. There were considerably fewer op-
tions for German, so we decided on the GottBERT
base model (Scheible et al., 2024), which is not pre-
trained on tweet data, but is based on the RoBERTa
architecture (Liu et al., 2019). We then fine-tune
both models on their respective language data for
Track A.

3.3 Fine-tuning a multilingual model
In order to be able to run the task of emotion detec-
tion on languages with less resources available than
German and English, we leverage the pre-trained

1Belay et al. (2025) provide the datasets for the Ethiopian
languages Amharic, Oromo, Somali, and Tigrinya.
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multilingual large language model XLM-T. We first
fine-tune the model on the joint training data for all
10 languages in our sample, resulting in a single
multilingual classifier for all languages. To com-
pare, we then fine-tune the same model, XLM-T,
on the training data for each language, resulting in
one classifier per language.

3.4 Task-adaptive pre-training
Researchers like Gururangan et al. (2020), as well
as submissions to previous years of SemEval, for
example by Wang et al. (2023), have shown the
effectiveness of continuing to pre-train and adapt
large language models that have so far been trained
on huge, heterogeneous corpora. Domain-adaptive
and task-adaptive pre-training – continued pre-
training with domain- and task-specific data – con-
sistently improves performance on the domains
and tasks the additional data is from. Since XLM-
T builds on XLM-R by training on tweet data, it
can be said to already come with a certain amount
of domain-adaptive pre-training off-the-shelf. Ad-
ditionally, when exploring the effects of language-
adaptive pre-training (domain-adaptive pre-training
where the target language is considered to be the
domain) and task-adaptive pre-training on multi-
lingual sentiment analysis, Wang et al. (2023) find
task-adaptive pre-training to be the main contribu-
tor to improved classifier performance. Therefore,
and also due to time and resource constraints, we
only apply a minimal version of task-adaptive pre-
training (TAPT).

For that, we continue training our XLM-T model
on the original masked language modeling (MLM)
training objective, using the unlabeled training data
from the 10 languages in our sample. We then fine-
tune it for emotion classification on the joint data of
4 languages: German, English, Spanish and Hindi.

3.5 Fine-tuning a T5 model
We also further investigate the T5 pre-trained
model. We use the T5 base model (Raffel et al.,
2020) initially on English only and then move to
T5 fine-tuned for Emotion Recognition (Romero),
as it has similar emotion labels to our task. Al-
though both T5 models used are English mono-
lingual models, we run the fine-tuned model on
German as well for comparison purposes. In an
early analysis, the results for English of the T5
fine-tuned model were competitive to the scores
obtained with XLM-T without fine-tuning. How-
ever, due to T5 being outperformed by the English

Twitter-RoBERTa model, as well as the lack of a
T5 model fine-tuned specifically on tweet data, we
focus on the RoBERTa-based models. Nonetheless,
we believe that T5 achieving similar results to a
RoBERTa-based model may be indicative of fur-
ther research into T5-based models possibly prov-
ing successful in a monolingual framework.

4 Experimental Setup

In this section, we provide details on our consider-
ations about the data and training of the models.

4.1 Datasets
Mentions of usernames in the data have already
been replaced by "@<username>", and URLs by
"##URL##" in the datasets distributed by the task
organizers. Since this low-impact, potentially sensi-
tive data has already been cleaned, and to preserve
all meaningful features in the data, we do not apply
any further preprocessing.

Before training, we combine the training and de-
velopment sets to make our own stratified training
and validation splits using the skmultilearn library
by Szymański and Kajdanowicz (2017).

4.2 Training with optimized thresholds
The training data contains large class imbalances
between the different emotions, making some emo-
tions harder to learn than others. To account for this,
we optimize individual thresholds for each emotion
to allow for lower thresholds for smaller classes
(leading to a higher recall) and higher thresholds
for larger classes (leading to a higher precision).
At each training epoch, we start with a preliminary
threshold of 0.5 for each emotion. After the epoch,
we evaluate the current model on a validation set,
and then iteratively adjust the thresholds until we
reach the best possible macro-averaged F1 score.
We then re-run the predictions with the optimized
thresholds and calculate the loss. The model with
the currently best F1 score is saved as our check-
point.

To evaluate the model on the development set,
we again compute an individual classification
threshold for each emotion using the same strat-
egy. Then for running inference on the test set, we
directly apply the thresholds of the best training
epoch to the classification.

4.3 Training resources
For mono- and multilingual fine-tuning, we use the
AdamW optimizer (Loshchilov and Hutter, 2019)
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Model afr amh arq ary chn deu eng esp hau hin

Logistic Regression 0.2029 0.5369 0.4387 0.3062 0.0881 0.4425 0.4912 0.6114 0.6048 0.5628

XLM-T
Monolingual fine-tuning 0.4673 0.5345 0.4912 0.5013 0.5664 0.5332 0.6450 0.7748 0.5837 0.8078
Multilingual fine-tuning 0.5034 0.6073 0.5052 0.4722 0.5862 0.5813 0.6448 0.7672 0.5425 0.7644

XLM-T with TAPT
Multilingual fine-tuning 0.3927 0.4925 0.4726 0.4280 0.6644 0.5773 0.6561 0.7635 0.4075 0.7855

True monolingual models
GottBERT – – – – – 0.5976 – – – –
Twitter-RoBERTa – – – – – – 0.7251 – – –

T5 model
Base – – – – – – 0.5939 – – –
Fine-tuned – – – – – 0.4536 0.6541 – – –

SemEval Baseline 0.3714 0.6383 0.4141 0.4716 0.5308 0.6423 0.7083 0.7744 0.5955 0.8551

Table 1: Overview of macro-averaged F1-scores for all our models and analyzed languages

with an initial learning rate of 1e-5 and a maxi-
mum number of 10 epochs. For task-adaptive pre-
training, we use AdamW with a learning rate of
5e-5. We were only able to run TAPT for 3 epochs.
For both fine-tuning and continued pre-training we
use a batch size of 16 and a maximum sequence
length of 150.

All transformer-based architectures were trained
on T4 or L4 GPUs as available through Google Co-
lab and relying on the Huggingface Transformers
library (Wolf et al., 2020). The Logistic Regres-
sion classifier was trained using the sklearn library
(Pedregosa et al., 2011).

5 Results

Overall, we were able to outperform the SemEval
Baseline in 7 out of 10 submitted languages, only
for Amharic, German, and Hindi we were not able
to achieve a score above the baseline. Table 1
shows the results from all our experiments, while
Table 2 shows our final submission results. Since
we ran some of the experiments after the end of the
evaluation phase, we were not able to submit our fi-
nal best scores for all languages. XLM-T achieves
the best results in 7 out of 10 languages, although
some languages benefit more from monolingual
fine-tuning, while others do better with multilin-
gual fine-tuning. For German and English, their
specialized monolingual models GottBERT and
Twitter-RoBERTa outperform XLM-T, regardless
of the fine-tuning strategy. Interestingly, the best
performing model for Chinese is XLM-T with task-
adaptive pre-training (TAPT) and joint fine-tuning
on four languages, even though Chinese had not
been in the set of languages that model was fine-

tuned on.

With the exception of Chinese, we could not
replicate previous findings showing that applying
task-adaptive pre-training significantly increases
model performance. In fact, its performance for
Afrikaans and Hausa is quite weak in comparison.
However, this system still achieves competitive re-
sults for the majority of the languages. We suppose
that due to our limited resources, we were not able
to fully tap into the potential of TAPT, as the pre-
training process was aborted after 3 epochs, which
is not nearly enough time for the model to con-
verge. This exactly might have been the issue with
Afrikaans and Hausa, which are also the only two
languages in our set not present in the top 30 lan-
guages XLM-T was originally trained on (Barbieri
et al., 2022).

Our resource limitations for applying task-
adaptive pre-training are an example for the trade-
off between performance and resource use that re-
searchers in this field are continuously faced with.
On that note, it is interesting to remark that in our
experiments, Logistic Regression slightly outper-
forms XLM-T for Hausa. We do not have a solid
hypothesis for this, especially since calculating the
SCUMBLE score (Charte et al., 2019) for our 10
languages suggests that Hausa, along with Chinese,
has the highest label concurrency (minority labels
occurring mostly or only together with majority
labels), which should make it especially difficult to
get accurate classification results for their minority
labels.

When comparing the performance of joint multi-
lingual and monolingual fine-tuning, there seems
to be no clear winner at first. Taking into account
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whether the target language is low-resource or high-
resource however, there seems to be a tendency for
low-resource languages to prefer multilingual train-
ing. Afrikaans, and especially Amharic, seem to
benefit from the additional information present in
the other language data with an increase of the
F1 score from 0.53 to 0.6 for the latter. Con-
versely, high-resource languages mostly perform
better with monolingual training. This is especially
highlighted when comparing the language-specific
models GottBERT and Twitter-RoBERTa with the
multilingual XLM-T fine-tuned on German or En-
glish data. Both fully monolingual models outper-
form the multilingual one.

For completeness, it would be interesting to com-
pare the performance of XLM-T with TAPT, fine-
tuned for each language data individually, with
our jointly fine-tuned TAPT-applied XLM-T. It re-
mains an open question whether with our setup we
would reach a similar conclusion as Wang et al.
(2023), where the advantages of monolingual train-
ing become less pronounced in the presence of
task-adaptive pre-training.

Language Micro F1 Macro F1

Afrikaans 0.5236 0.4673
Amharic 0.5566 0.5345
Arabic (Algerian) 0.5118 0.4912
Arabic (Moroccan) 0.5111 0.5013
Chinese 0.6902 0.5664
German 0.6537 0.5976
English 0.7537 0.7251
Spanish 0.7338 0.7635
Hausa 0.5887 0.5837
Hindi 0.7762 0.7855

Table 2: Submission scores for our languages

With our submitted results, we ranked 18th for
Afrikaans, 20th for Moroccan Arabic, 21st for Al-
gerian Arabic, 22nd for Hausa, 23rd for Spanish,
24th for German, 26th for Amharic, 26th for Chi-
nese, 31st for Hindi, and 37th for English in the
final ranking.

6 Conclusion

Overall, our systems aimed at comparing the per-
formance of mono- and multilingual pre-trained
language models for multi-label emotion recogni-
tion. We find that when the necessary resources
are available, a specialized monolingual approach

outperforms a generalized multilingual one. Emo-
tion recognition for high resource languages like
German and English works best without the inter-
ference of other languages.

Nonetheless, the strength of multilingual models
lies in their versatility and their ability to lever-
age information from higher-resource languages to
make inferences about lower-resource languages.
As such, multilingual models allow us to tackle
tasks with low-resource languages where a special-
ized approach is simply not feasible. Our example
of Chinese shows that classifiers can strongly bene-
fit from being fine-tuned on a set of languages they
are not even a part of. Identifying those source
languages that are especially useful for improving
classification performance in a target language is a
task that researchers tackle in the field of zero-shot
classification (Lin et al., 2019), which was also the
focus of Track C in this SemEval task.
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