VerbaNexAI at SemEval-2025 Task 3: Fact Retrieval with Google Snippets for LLM Context Filtering to identify Hallucinations

Anderson Morillo, Edwin Puertas, Juan Carlos Martinez Santos


Abstract
Thefirst approach leverages advanced LLMs, employing a chain-of-thought prompting strategywith one-shot learning and Google snippets forcontext retrieval, demonstrating superior performance. The second approach utilizes traditional NLP analysis techniques, including semantic ranking, token-level extraction, and rigorous data cleaning, to identify hallucinations
Anthology ID:
2025.semeval-1.202
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1534–1541
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.202/
DOI:
Bibkey:
Cite (ACL):
Anderson Morillo, Edwin Puertas, and Juan Carlos Martinez Santos. 2025. VerbaNexAI at SemEval-2025 Task 3: Fact Retrieval with Google Snippets for LLM Context Filtering to identify Hallucinations. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1534–1541, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
VerbaNexAI at SemEval-2025 Task 3: Fact Retrieval with Google Snippets for LLM Context Filtering to identify Hallucinations (Morillo et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.202.pdf