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Abstract

Classification tasks often suffer from imbal-
anced data distribution, which presents chal-
lenges in food hazard detection due to severe
class imbalances, short and unstructured text,
and overlapping semantic categories. In this
paper, we present our system for SemEval-
2025 Task 9: Food Hazard Detection, which ad-
dresses these issues by applying data augmenta-
tion techniques to improve classification perfor-
mance. We utilize transformer-based models,
BERT and RoBERTa, as backbone classifiers
and explore various data balancing strategies,
including random oversampling, Easy Data
Augmentation (EDA), and focal loss. Our ex-
periments show that EDA effectively mitigates
class imbalance, leading to significant improve-
ments in accuracy and F1 scores. Furthermore,
combining focal loss with oversampling and
EDA further enhances model robustness, par-
ticularly for hard-to-classify examples. These
findings contribute to the development of more
effective NLP-based classification models for
food hazard detection.

1 Introduction

The rapid advancement of natural language pro-
cessing (NLP) has facilitated the development of
automated classification systems across various
domains, including food hazard detection. Accu-
rately identifying and categorizing food hazards is
essential for ensuring food safety and mitigating
health risks associated with contaminated or unsafe
food products. However, food hazard classifica-
tion presents several challenges, including severe
class imbalances, ambiguous and unstructured tex-
tual descriptions, and the need for high predictive
accuracy. Traditional approaches to hazard detec-
tion have relied on manual inspections and rule-
based classification methods, which are often time-
consuming and prone to human error. In contrast,
recent advancements in machine learning and NLP

have enabled the automation of this process, lever-
aging text classification models to analyze food
hazard reports and categorize them into predefined
classes.

Transformer-based models, such as BERT (De-
vlin, 2019) and RoBERTa (Zhuang et al., 2021),
have demonstrated state-of-the-art performance
in text classification tasks. However, their ef-
fectiveness in imbalanced classification settings
remains a challenge, as they tend to favor ma-
jority classes while underperforming in minority
categories. Class imbalance is a common issue
where certain categories have significantly fewer
instances than others, leading to biased predictions
and reduced model performance on underrepre-
sented classes. To address this issue, researchers
have explored various techniques, including data
augmentation, resampling methods, and modified
loss functions. Easy Data Augmentation (EDA)
(Wei and Zou, 2019) generates additional training
samples for minority classes, enhancing model gen-
eralization. Similarly, focal loss (Lin et al., 2017)
modifies the traditional cross-entropy loss func-
tion to focus more on difficult-to-classify exam-
ples, improving performance on underrepresented
categories.

In this study, we systematically investigate the
impact of data balancing techniques on transformer-
based models for food hazard classification. Specif-
ically, we evaluate the effectiveness of oversam-
pling, EDA, and focal loss in mitigating class im-
balance and improving classification performance.
Through extensive experimentation, we demon-
strate that these strategies enhance model robust-
ness, particularly in detecting minority-class haz-
ards. Our findings contribute to the development
of more reliable NLP-based classification models
for food safety applications, providing valuable in-
sights into optimal approaches for handling class
imbalance in text classification tasks.
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2 Related Work

2.1 Text Classification
Text classification, a core NLP task, involves as-
signing predefined labels to text. Traditional meth-
ods used rule-based approaches and machine learn-
ing models like Naïve Bayes, SVM, and Random
Forests. Deep learning, particularly transformer-
based models, has significantly improved perfor-
mance by capturing contextual dependencies (Fan
et al., 2024b).

Models like BERT (Devlin, 2019) and RoBERTa
(Zhuang et al., 2021) set new benchmarks but
struggle with imbalanced datasets, where minority
classes are often overlooked. This issue is critical
in domains like food hazard detection, where rare
cases carry significant risks. To address class im-
balance, researchers employ resampling techniques
(Lauron and Pabico, 2016), cost-sensitive learning,
and modified loss functions like focal loss (Lin
et al., 2017). Data augmentation has also proven
effective in enhancing classification robustness, es-
pecially in low-resource settings.

2.2 Data Augmentation
Data augmentation expands training datasets to
improve model generalization (Fan et al., 2024a),
particularly in NLP, where it helps mitigate class
imbalance in text classification. Traditional meth-
ods like synonym replacement, back-translation,
and paraphrasing (Wei and Zou, 2019) enhance
lexical diversity while preserving meaning. Easy
Data Augmentation (EDA) is widely used due to
its simplicity, applying synonym replacement, ran-
dom insertion, swap, and deletion to boost perfor-
mance on imbalanced datasets. More advanced
techniques leverage contextual embeddings (e.g.,
Word2Vec, FastText) and transformer-based text
generation, though excessive alterations risk la-
bel noise. Recent studies combine augmentation
with resampling strategies (Adegbenjo and Ngadi,
2024), improving accuracy and F1 scores, espe-
cially for underrepresented classes. Building on
these advancements, we integrate oversampling,
EDA, and focal loss to enhance classification in
food hazard detection. Our approach effectively
mitigates class imbalance and strengthens model
robustness, particularly for minority classes.

3 Task Definition and Dataset

SemEval-2025 Task 9 involves classifying short
food recall reports into predefined hazard-related

Figure 1: The structured pipeline for food hazard detec-
tion.

labels (Randl et al., 2025). The objective is to de-
velop robust NLP models that accurately identify
hazard types and product categories despite imbal-
anced, noisy, and unstructured text.

The dataset comprises thousands of entries ob-
tained from government agencies. Each entry in-
cludes a title, typically a brief recall identifier, and
a text description that varies in length and format,
often containing domain-specific terminology. The
data are marked by severe class imbalance, with
many hazard categories significantly underrepre-
sented.

4 Methodology

Recent work in food hazard detection highlights
the importance of addressing data imbalance, short
and unstructured text, and overlapping semantic
categories (Adegbenjo and Ngadi, 2024). SemEval-
2025 Task 9 intensifies these challenges by pro-
viding a real-world dataset where certain hazard
classes are severely underrepresented, necessitat-
ing specialized techniques to ensure fair and robust
classification. In this study, we adopt a transformer-
based approach, leveraging BERT (Devlin, 2019)
and RoBERTa (Zhuang et al., 2021), and integrate
three key strategies—random oversampling, Easy
Data Augmentation (EDA), and focal loss—to en-
hance performance on minority classes while main-
taining overall accuracy.

Our methodology follows a structured pipeline,
shown in Figure 1, which consists of data pre-
processing and augmentation, transformer-based
model fine-tuning, and final evaluation using stan-
dard classification metrics. The sections below de-
scribe how these components are cohesively com-
bined to tackle the real-world complexities of food
hazard reports.

4.1 Data Preprocessing and Augmentation

All textual inputs undergo cleaning and tokeniza-
tion before fine-tuning. We remove stopwords,
numerical tokens, and other non-informative el-
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Operation Description

Synonym Replacement Replace with synonyms
Random Insertion Insert random words
Random Swap Swap two words
Random Deletion Remove words (p = 0.1)

Table 1: Easy Data Augmentation (EDA) operations
applied to the dataset.

ements, followed by lemmatization to standardize
word forms. Outliers are then filtered using the
interquartile range (IQR) to reduce extreme text
lengths that could bias the model. We adopt Word-
Piece tokenization (Song et al., 2020) to handle
out-of-vocabulary (OOV) tokens, thereby preserv-
ing subword-level information crucial for short and
domain-specific texts.

To counteract severe class imbalance, we intro-
duce a combined augmentation strategy that inte-
grates random oversampling with Easy Data Aug-
mentation (EDA) (Wei and Zou, 2019). Oversam-
pling is performed after tokenization to ensure each
minority class is represented at a target sample rate.
EDA, summarized in Table 1, is then applied to
further expand the diversity of minority samples by
introducing lexical and structural variations. Rather
than applying each augmentation technique inde-
pendently, we incorporate them into a unified pro-
cess that consistently enhances minority-class cov-
erage and lexical variety. This integrated augmenta-
tion stage aligns with prior findings that emphasize
synergy between resampling and data augmenta-
tion for imbalanced text classification (Lauron and
Pabico, 2016).

4.2 Classification Model and Imbalance
Handling

The classification model builds on BERT and
RoBERTa, which are fine-tuned for multi-class pre-
diction. While cross-entropy loss remains the base-
line choice, we adopt focal loss (Lin et al., 2017)
to emphasize hard-to-classify examples in minority
classes. The focal loss function is given by:

FL(pt) = −αt(1− pt)
γ log(pt), (1)

where αt balances class contributions, γ focuses on
difficult samples, and pt is the predicted probability
for the correct class. We set α = 1 and γ = 2 based
on initial experiments indicating improved recall
for underrepresented hazards.

Random oversampling is performed using the
strategy:

sampling_strategy = { k : target_count |
v < target_count,∀k, v},

(2)
where each minority class is upsampled to match
a threshold of the majority class size. By applying
oversampling in tandem with EDA, we ensure that
minority classes benefit from both quantitative and
qualitative increases in training samples.

4.3 System Configurations
We evaluate several configurations to highlight the
effect of each balancing technique (Table 2). The
Baseline employs standard BERT fine-tuning with-
out augmentation, while additional setups incorpo-
rate oversampling, EDA, focal loss, or a combina-
tion thereof. We also include RoBERTa variants,
reflecting the same augmentation and imbalance
strategies. This design enables a comprehensive
comparison of how each technique—alone or com-
bined—contributes to classification performance
on short, imbalanced food hazard reports.

This integrated methodology ensures that each
stage—preprocessing, augmentation, model train-
ing—cooperates to address the unique challenges
posed by SemEval-2025 Task 9, namely short, im-
balanced, and domain-specific textual data.

5 Experiments

Our study strategically integrates three tech-
niques—Easy Data Augmentation (EDA), oversam-
pling and focal loss—to address class imbalance
in classification tasks. The sequence of application
is as follows: EDA is applied before tokenization
to enhance data diversity, oversampling is applied
after tokenization to balance class distribution, and
focal loss is utilized during training to optimize
the model’s focus on difficult samples. These ex-
periments not only demonstrate the effectiveness
of each individual method but also highlight the
synergistic benefits of their combination. The re-
sults show that this integrated approach enhances
data diversity, balances class distribution, and im-
proves model performance by prioritizing challeng-
ing samples.

5.1 Experimental Setup
Oversampling The sample rate is set to r. For
classes whose size is smaller than r% of the most-
frequent class, we perform oversampling to ensure
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Configuration Description

Baseline Standard BERT fine-tuning with cross-entropy loss
BERT + Oversampling Resample minority classes after tokenization
BERT + EDA Apply data augmentation using EDA
BERT + Focal Loss Replace cross-entropy with focal loss
BERT + EDA + Focal Loss Combine lexical augmentation and focal loss
RoBERTa Variants Mirror each configuration using RoBERTa

Table 2: Model configurations used for evaluation.

their size matches that of r% of the most-frequent
class.

Easy Data Augmentation The sample rate is set
to r. For each instance input, we perform EDA.
Each of the four operations—Random Synonym
Replacement, Random Insertion, Random Swap,
and Random Deletion—has a 50% probability of
being applied. For the first three operations, the
parameter (n), which indicates the number of times
the operation is to be performed, is randomly se-
lected within the range of 1 to the total number
of words in the text. In the case of the Random
Deletion operation, each word is assigned a 10%
probability of being deleted.

Focal Loss Alpha (α),the balance parameter for
class imbalance, is set to 1. Gamma (γ), the focus-
ing parameter for hard examples, is set to 2. The
method for aggregating the loss values (reduction)
is "mean".

5.2 Training Details

We utilized the ’title’ and ’text’ fields from the
dataset released by the organizers. In the data pro-
cessing phase, categorical labels were encoded into
numerical values using the LabelEncoder. The
dataset was subsequently split into training and
testing sets, with 20% allocated for testing. If Easy
Data Augmen- tation (EDA) was enabled, data aug-
mentation techniques were applied specifically to
the training subset (train_df). Additionally, if over-
sampling was employed, data augmentation was
conducted after the tokenization process.

For our models, we utilized BERT (Devlin,
2019) and RoBERTa (Zhuang et al., 2021). During
training, the total batch size was set to 32. The
AdamW optimizer (Kingma, 2014) was used with
a learning rate of 5e-5, and dropout was specified at
0.0. The learning rate schedule followed a ’cosine
with warmup’ strategy, incorporating a warmup
phase equivalent to 10% of the total training steps

to gradually adjust the learning rate and enhance
model convergence. The default loss function used
was CrossEntropyLoss, unless focal loss was se-
lected.

In our study on NLP food hazard classification,
we concentrated on addressing the issue of class
imbalance, particularly in predicting the most im-
balanced label, "product." To evaluate our model’s
performance, we established BERT, provided by
the organizers, as our baseline. The evaluation uti-
lized inputs from both "text" and "title" to enhance
the model’s effectiveness. We employed several
metrics to assess performance, including accuracy,
F1-score (macro), and F1-score (weighted). See
Table 3 for the results for predicting "product" (data
split: training/validation/test).

Oversampling BERT achieved an accuracy of
0.22, with an F1-Macro score of 0.03 and an F1-
Weighted score of 0.13, highlighting its limitations
in handling the imbalanced dataset. Oversampling
with a sample rate at 0.1 yielded the best perfor-
mance among the oversampling variations, achiev-
ing an accuracy of 0.50, an F1-Macro score of 0.25,
and an F1-Weighted score of 0.45. This indicates
that oversampling can effectively address class im-
balance and improve classification performance.

Easy Data Augmentation The experimental re-
sults presented in Table 3 also demonstrate the
effectiveness of Easy Data Augmentation (EDA)
in enhancing the performance of the model for
the “product.” Compared to the baseline accuracy
of 0.22, the application of EDA across multiple
configurations consistently improved performance.
EDA with a sample rate of 0.2 increased accuracy
to a maximum of 0.55. Similarly, the F1 macro
score improved significantly from 0.03 to 0.30,
while the F1 weighted score rose from 0.13 to 0.52.
These findings underscore the potential of EDA as
a valuable technique for improving model perfor-
mance in imbalanced classification tasks.
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(ST2) Product Detection
Training Methods Accuracy F1-Macro F1-Weighted
BERTbase 0.22 0.03 0.13
Oversampling0.1 0.50 0.25 0.45
Oversampling0.2 0.45 0.22 0.41
Oversampling0.5 0.47 0.23 0.42
Oversampling1.0 0.29 0.13 0.26
EDA0.1 0.54 0.29 0.50
EDA0.2 0.55 0.30 0.52
EDA0.5 0.55 0.30 0.51
EDA1.0 0.54 0.30 0.51
Focal loss + Oversampling0.1 0.49 0.24 0.44
Focal loss + Oversampling0.2 0.47 0.23 0.41
Focal loss + Oversampling0.5 0.48 0.25 0.44
Focal loss + EDA0.1 0.53 0.29 0.50
Focal loss + EDA0.2 0.54 0.29 0.51
Focal loss + EDA0.5 0.54 0.30 0.51
Focal loss + EDA1.0 0.53 0.29 0.50
Oversampling + EDA0.1 0.49 0.25 0.45

Table 3: BERT model with different strategies for predicting product. The subscript isthe sample rate. For example,
0.1 means to upsample categories that are less than 10% of the maximum sample to 10% of the maximum sample.

(ST2) Hazard Detection
Training Methods Accuracy F1-Macro F1-Weighted
BERTbase 0.58 0.17 0.53
BERT + Focal loss + EDA0.1 0.86 0.59 0.85
RoBERTa + Focal loss + EDA0.1 0.86 0.59 0.85

Table 4: BERT and RoBERTa with focal loss and EDA on predicting hazard. The subscript is sample rate. For
example, 0.1 means to upsample categories that are less than 10% of the maximum sample to 10% of the maximum
sample.

Combination After observing that handling im-
balance can enhance model performance, we ex-
plored the effects of combining this strategy with
focal loss, which places greater emphasis on harder-
to-classify examples. We also examined the com-
bination of EDA with oversampling. While these
combinations did result in performance improve-
ments that surpassed the baseline BERT model,
they did not achieve the same high levels of effec-
tiveness as EDA alone. For instance, the combi-
nation of focal loss with oversampling yielded an
accuracy of 0.49 at a sample rate of 0.1, while EDA
at the same rate achieved an accuracy of 0.54.

Prediction on Hazard To ensure that the model
predicts well across different tasks, we also made
predictions on “hazard.” The combination of focal
loss and Easy Data Augmentation (EDA) signifi-
cantly increased performance from an accuracy of
0.58 for BERT to 0.86 at a sample rate of 0.1. We
also investigated the RoBERTa model in a simi-
lar manner; however, it performed comparably to
BERT, leading us to discontinue further exploration
of RoBERTa. Table 4 shows some results of these
experiments.

In summary, the results show that this integrated

approach enhances data diversity, balances class
distribution, and improves model performance by
prioritizing challenging samples. Our findings indi-
cate that EDA is a particularly effective technique
for addressing class imbalance in food hazard clas-
sification. While combinations with focal loss and
oversampling improve performance, they do not
surpass EDA alone. Additionally, these methods
may require further fine-tuning and more training
steps to optimize their effectiveness.

6 Conclusion

In this paper, we strategically combined three meth-
ods - Easy Data Augmentation (EDA), oversam-
pling, and focal loss - to tackle class imbalance in
classification tasks. Our model ranked 13th on ST1,
and 12th on ST2. It surpassed the baseline in both
ST1, predicting product and hazard category, and
ST2, predicting specific hazard and product.

Future work will explore strategies to en-
hance model performance in data-constrained and
domain-shift scenarios. We plan to investigate the
integration of advanced augmentation techniques
and refined loss functions, along with fine-tuning
the existing methodology.
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Limitations

While our approach demonstrated notable improve-
ments in food hazard classification, several lim-
itations remain. First, despite the effectiveness
of EDA and oversampling in mitigating class im-
balance, these techniques may introduce synthetic
noise into the dataset. Augmented samples, par-
ticularly those generated via lexical modifications,
may not always accurately preserve the semantic
meaning of the original text, potentially leading to
misclassification.

Second, our reliance on transformer-based mod-
els presents computational challenges. Fine-tuning
these models requires significant hardware re-
sources, making it less feasible for real-time appli-
cations or deployment in resource-constrained envi-
ronments. Additionally, while focal loss improves
performance on hard-to-classify examples, it re-
quires careful tuning of hyperparameters, which
may not generalize well across different datasets or
classification tasks.

Another key limitation is the potential lack of
generalizability. Our model was trained on the
SemEval-2025 Task 9 dataset, which, despite be-
ing a real-world dataset, has specific linguistic
characteristics and class distributions. This may
limit the model’s ability to perform well on other
food safety-related classification tasks with differ-
ent text structures, hazard categories, or reporting
styles. Future work should explore domain adap-
tation techniques and evaluate performance across
multiple datasets.

Finally, while our approach improves minority
class detection, the gap between majority and mi-
nority class performance remains. Additional tech-
niques, such as contrastive learning, cost-sensitive
training, or adaptive resampling, could be explored
to further enhance model fairness and robustness.
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