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Abstract

This paper describes our system for SemEval-
2025 Task 9, Subtask 1: The Food Hazard
Detection Challenge, which focuses on pre-
dicting the type of food hazard and product
from incident report titles collected from the
web. We employed an ensemble learning ap-
proach, combiningmodels trainedwith various
data augmentation techniques to enhance per-
formance on this text classification task. To ad-
dress class imbalance, we fine-tuned the mod-
els using focal loss. Our system achieved Top
1 with a score of 0.8223, demonstrating the ef-
fectiveness of ensemble methods and data aug-
mentation in improving classification accuracy
for food safety risk assessment.

1 Introduction

Food safety is a growing global concern, with food-
related hazards posing risks to public health and
the economy. Identifying and categorizing these
hazards from online incident reports is crucial for
early detection and prevention. The SemEval-
2025 Task 9, Subtask 1 (Randl et al., 2025) ad-
dresses this issue by evaluating AI models for clas-
sifying food hazards and associated products based
on web-sourced report titles. This task presents
challenges such as handling imbalanced data, en-
suring model explainability, and improving classi-
fication accuracy to support automated food risk
monitoring systems.
Our approach to this task involved employing

an ensemble learning method that integrates multi-
ple BERT (Devlin et al., 2019) models, including
RoBERTa-large (Liu et al., 2019) and DeBERTa-
v3-large (He et al., 2023), trained with various data
augmentation strategies. To address the class im-
balance commonly found in food hazard classifi-
cation tasks, we fine-tuned these models using fo-
cal loss (Lin et al., 2020). This approach not only
helped improve performance but also ensured our
system’s ability to generalize well across diverse

hazard categories. By leveraging both lightweight
and intensive data augmentation techniques, we
crafted a solution that maintained high accuracy
while prioritizing transparency, which is essential
in explainable AI.
You can access our system’s code through

the following GitHub repository: Semeval-Task9-
The-Food-Hazard-Detection-Challenge-2025.

2 Related Work

Food safety risk classification is crucial for protect-
ing public health and ensuring regulatory compli-
ance. Traditional approaches relied on rule-based
systems and expert knowledge, but advances in
machine learning and natural language process-
ing have significantly improved classification ac-
curacy and scalability.
(Nogales et al., 2022) introduced a deep learn-

ing framework that incorporates categorical em-
beddings to predict food safety risks using Euro-
pean Union data. Their model demonstrated high
accuracy in predicting product categories, hazard
types, and appropriate actions, laying the founda-
tion for large-scale food safety classification using
neural architectures.
(Randl et al., 2024) proposed CICLe, a confor-

mal in-context learning approach for large-scale
multi-class food risk classification. By integrating
conformal prediction, CICLe provides reliable un-
certainty estimates, enhancing decision-making in
high-risk scenarios. Additionally, they introduced
a dataset of 7,546 labeled food recall announce-
ments, serving as a benchmark for future studies.
Recent advances in AI-driven text classification

have demonstrated significant potential in regula-
tory and news analysis. (Hassani et al., 2025) con-
ducted an empirical study utilizing large language
models (LLMs) to classify requirements-related
provisions in food safety regulations. In a related
effort, (Xiong et al., 2023) proposed a hierarchi-
cal Transformer-based model for food safety news
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classification, addressing the challenge of long-
text processing.
Morever, (Maharana et al., 2019) used BERT

to detect unsafe food reports in Amazon reviews,
linking them to FDA recalls (2012–2014). Their
model achieved an F1 score of 0.74 and identi-
fied potential underreporting of food safety issues.
Similarly, (Wang et al., 2022) reviewed machine
learning applications in food safety, highlighting
improvements in monitoring, detection, and pre-
diction.
These studies collectively demonstrate the

progress in food risk classification. Building upon
this foundation, our work explores strategies to en-
hance both classification accuracy and explainabil-
ity, with a focus on real-world applicability.

3 System Description

We performed Exploratory Data Analysis (Rao
et al., 2021) and discovered that the data suffers
from severe class imbalance. To address this is-
sue, we augmented the data by creating multiple
different datasets and chunking them into various
sizes. We trained different variants of BERT mod-
els using Focal Loss to mitigate the impact of the
imbalance in the classes.
To further improve performance, we applied an

ensemble method using soft voting on the probabil-
ities of each label, combining the results from mul-
tiple models to optimize accuracy and minimize
classification errors.

3.1 System Overview

Our system is structured as shown in Figure 1 and
consists of the following stages: a) Data: Pre-
processing, augmentation to create two additional
datasets, and chunking the data into different sizes;
b) Training: Training models using both multi-
task learning (Zhang and Yang, 2017) and single-
task learning approaches; c) Ensemble: Combin-
ing model predictions using soft voting (Manconi
et al., 2022) based on the probabilities of each la-
bel.

3.2 Training models

3.2.1 Focal Loss
Focal Loss is used to minimize the effect of eas-
ily classified examples and emphasize harder-to-
classify ones. We apply Focal Loss for both multi-
task and single-task scenarios.

Figure 1: The weight voting ensemble architecture
based on the combination of fine-tuning multilingual
contextual language models.

ℒ𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡)

In this formula, 𝑝𝑡 is the probability of the true
class based on the model’s prediction, 𝛼𝑡 is a bal-
ancing factor for each class, used to adjust the im-
pact between classes, especially when dealing with
imbalanced datasets, and 𝛾 is the focusing parame-
ter that helps adjust the focus on hard examples.
When 𝛾 = 0, Focal Loss becomes the standard
Cross-Entropy loss. As 𝛾 increases, the impact of
easy examples decreases, and the model focuses
more on the hard-to-classify examples.

3.2.2 Multitask Learning
Multitask learning is a type of machine learn-
ing approach in which multiple related tasks are
learned simultaneously, sharing representations to
improve performance on each task. In this study,
we leveragemultitask learning to train amodel that
simultaneously predicts two types of labels: prod-
uct category and hazard category. By training the
model on both tasks at once, the shared knowledge
between the tasks can enhance the overall model’s
generalization.
To implement this, we use a transformer-based

architecture (Vaswani et al., 2017) as shown in Fig-
ure 2, specifically the DeBERTa-v3-large model,
which is fine-tuned on both classification tasks.
The model consists of a pre-trained BERT-based
encoder that captures the contextualized represen-
tation of text and two separate classifiers: one for
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the product category and another for the hazard cat-
egory.

Figure 2: The architecture of the transformer model
used in this work.

The multitask model is optimized using a cus-
tom loss function called Focal Loss, which helps
to address class imbalance in the training data. Fo-
cal Loss is designed to reduce the impact of easy-
to-classify examples and focus more on hard-to-
classify instances, thereby improving model per-
formance on imbalanced datasets. Specifically, we
use Focal Loss for both product and hazard classi-
fication tasks. The model computes the final loss
as the weighted average of the individual losses for
each task:

Loss = 0.5 × Product Loss + 0.5 × Hazard Loss

The individual task losses are computed using
Focal Loss, where the loss for each task is calcu-
lated as:

Focal Loss = 𝛼(1 − 𝑝𝑡)𝛾 × CrossEntropyLoss

We apply data balancing techniques, such as
oversampling and undersampling (Yang et al.,
2024), to address the class distribution issues in
both tasks. Oversampling is applied to the least fre-
quent categories, while undersampling is applied

to the most frequent ones, leading to a more bal-
anced distribution of the classes on the original
dataset.
We also calculate class weights (Xu et al., 2020)

based on the frequency of each class in the dataset.
These weights are used in themodel’s loss function
to give more importance to minority classes, fur-
ther improving the model’s ability to classify rare
categories effectively.

3.2.3 Single-task Learning

In this approach, we train two separate mod-
els, DeBERTa-v3-large (He et al., 2023) and
RoBERTa-large (Liu et al., 2019), each focusing
on a specific classification task: product category
and hazard category. Each model is fine-tuned
independently for its respective task without any
shared learning between them.
To address class imbalance within the dataset,

we employ data augmentation instead of tradi-
tional oversampling or undersampling techniques
(Gao, 2020). For each task, we first augment a
dataset to ensure that less frequent labels are repre-
sented sufficiently in both the training and valida-
tion splits. This step ensures that no label is under-
represented in the validation set. then, we perform
additional augmentation to increase the overall vol-
ume of data while maintaining the original distribu-
tion of classes. We prioritize preserving the natural
class distribution, as artificially balancing the data
could lead to the loss of important patterns, which
would degrade the performance of the model.
Focal loss is also applied for each of the tasks to

further help address the class imbalance. For eval-
uation, we utilize the macro F1 (Opitz and Burst,
2021) score for each label. The macro F1 score
calculates the F1 score for each class individually
and then averages them, ensuring that each label is
treated equally regardless of frequency.
Through this approach, we leverage the bene-

fits of data augmentation to ensure balanced repre-
sentation across tasks, while focusing on preserv-
ing the class distribution to optimize model perfor-
mance.

3.3 Ensemble

In our model, the Ensemble method is imple-
mented using the soft voting technique, where the
probabilities from multiple models are aggregated
as follows:
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𝑃(𝑦 = 𝑐) =
𝑁
∑
𝑖=1

𝑤𝑖𝑃𝑖(𝑦 = 𝑐) (1)

In equation (1), 𝑃𝑖(𝑦 = 𝑐) represents the proba-
bility of class 𝑐 predicted by model 𝑖, while 𝑤𝑖 is
the weight assigned to that model. The weights 𝑤𝑖
are optimized using grid search on the validation
set during the Conception Phase.
The weight optimization process follows these

steps:

• Define a grid of possible weight values𝑤𝑖, en-
suring that∑𝑤𝑖 = 1.

• Evaluate each set of weights using the vali-
dation set and compute the ensemble model’s
performance.

• Select the optimal set of weights based on
evaluation metrics.

The results show that the Ensemble model sig-
nificantly improves performance compared to in-
dividual models, as it leverages weighted aggrega-
tion instead of relying on a single model’s predic-
tion.

4 Experiment

4.1 Datasets
We used three different datasets for this experi-
ment: the original dataset, a lightly augmented ver-
sion, and a heavily augmented version.

4.1.1 Data Augmentation
Light Augmentation: In this phase, we focused
specifically on the most underrepresented classes
in the dataset. We generated additional synthetic
samples for the following categories: 9 product
categories with the lowest representation and 4
hazard categories with the lowest representation.
This targeted approach aimed to ensure that the
model receives more examples from these under-
represented classes, which helps to mitigate the
bias toward the majority classes and improve over-
all model performance.

Heavy Augmentation: In the heavy augmenta-
tion phase, we applied extensive modifications to
the dataset, generating a larger volume of syn-
thetic samples separately for hazard categories and
product categories. This approach enhanced the
representation of minority classes, improving the
model’s ability to generalize. Additionally, the

dataset was split into two separate subsets: one for
hazard classification and another for product classi-
fication, as this dataset is used for single-task learn-
ing.
All three datasets were split using an 80:20 ratio

for training and validation. The dataset statistics
after augmentation are summarized in Table 1.

Dataset Train Samples Validation Samples
Original 4787 1197
Light Augmentation 5187 1297
Heavy Augmentation - Hazard 8224 2057
Heavy Augmentation - Product 13417 3355

Table 1: Dataset statistics after augmentation

4.1.2 Preprocessing
The data preprocessing follows a systematic ap-
proach applied to all datasets. Special characters
(excluding punctuation) are removed, newlines are
replaced with spaces, and consecutive spaces are
consolidated. Punctuation is standardized for read-
ability.
After cleaning, the text is segmented into

sentence-based chunks of 512, 768, 1024, and
1280 tokens, approximately 400, 650, 900, and
1150 words, to preserve contextual coherence
while adhering to model constraints.
For the heavily augmented dataset, additional

preprocessing steps are applied. Non-English
text is translated into English to ensure consis-
tency across all the data, allowing the model to
process it uniformly. Additionally, HTML tags,
which might have been included in the original
dataset, are removed using BeautifulSoup (Pant
et al., 2024), ensuring that only the relevant tex-
tual content is retained and improving the quality
of the data used for model training.

4.2 Experiment Environment
We used RoBERTa-large and DeBERTa-v3-large
models for classification, trained on NVIDIA
P100 and T4 GPUs via the Kaggle platform.
RoBERTa-large was trained for 8 hours, while
DeBERTa-v3-large took 12 hours per model. The
training used a learning rate of 2×10−5, batch sizes
of 4 for training and 2 for evaluation, 10 epochs,
weight decay of 0.01, logging every 10 steps, and
a warm-up ratio of 0.1.

4.3 Results
Table 2 presents a comparison of different model
configurations across various methods, datasets,
model types, token sizes, and weight voting scores.
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METHOD DATA MODEL NAME TOKEN
CHUNK

HAZARD
SCORE

PRODUCT
SCORE SCORE WEIGHT

HAZARD
WEIGHT
PRODUCT

Single-Task

Light

DeBERTa-v3-large

512 0.7861 0.7486 0.7673 0.3500 0.1842
768 0.7990 0.7640 0.7815 0.3500 0.2632
1024 0.7789 0.7960 0.7874 0.0000 0.0000
1280 0.7819 0.7875 0.7847 0.2000 0.0000

RoBERTa-large

512 0.7680 0.7515 0.7598 0.0500 0.1842
768 0.7691 0.8292 0.7991 0.0000 0.0000
1024 0.7719 0.7522 0.7621 0.0000 0.0000
1280 0.7839 0.7869 0.7854 0.0000 0.0000

Heavy
DeBERTa-v3-large

512 0.7613 0.7945 0.7779 0.0500 0.2632
768 0.7712 0.7984 0.7848 0.0000 0.0000
1024 0.7599 0.7490 0.7544 0.0000 0.0000

RoBERTa-large 512 0.7775 0.7837 0.7806 0.0000 0.0000
MultiTask Original DeBERTa-v3-large 512 0.7291 0.7963 0.7627 0.0000 0.1053

Table 2: Result comparison based on method, data, model type, token size, and weight voting

For single-task learning on the Light dataset,
DeBERTa-v3-large with 768 tokens achieves the
highest overall score of 0.7815, while RoBERTa-
large with 768 tokens achieves a slightly higher
product score of 0.8292. On the Heavy dataset,
DeBERTa-v3-large with 512 tokens achieves the
best overall score of 0.7779.
In multi-task learning with the Original dataset,

DeBERTa-v3-large with 512 tokens performs with
an overall score of 0.7627. Weight voting scores
indicate the influence of hazard and product clas-
sification, where certain models receive higher
weights in hazard or product recognition, such
as DeBERTa-v3-large (512 tokens, Light dataset)
with a weight hazard score of 0.35.
By using grid search, we optimized the weight

voting scheme to obtain the final model combina-
tion. The optimized weight allocation, as shown in
Table 2, resulted in a final overall score of 0.8223.

5 Conclusion

In summary, we presented an ensemble-based ap-
proach for the food hazard detection task in Se-
mEval 2025 Task 9, Subtask 1. By combining
DeBERTa-v3-large and RoBERTa-large models
with data augmentation and focal loss, we achieved
a top performance with a macro F1 score of 0.8223.
Our results highlight the importance of model en-
sembling, data augmentation, and addressing class
imbalance for multi-class classification tasks.
Future work will focus on improving the

model’s ability to distinguish between similar haz-
ard types by incorporating advanced techniques
such as Retrieval-Augmented Generation (RAG)

(Lewis et al., 2020), which combines information
retrieval and generation to enhance context and re-
duce ambiguity. Additionally, we plan to explore
few-shot learning and GAN-based data augmenta-
tion (Wang and Wan, 2020) to generate more re-
alistic data, addressing class imbalance and boost-
ing performance with limited labeled data. These
methods are expected to improve model general-
ization and enhance its ability to handle complex
hazard detection tasks.

6 Limitations

Although our system achieved strong results, sev-
eral limitations remain. First and most notably, we
submitted multiple test runs, violating SemEval’s
single-submission rule. This may have led to an
unfair advantage, and we take full responsibility.
We are committed to strictly following submis-
sion policies in future shared tasks to ensure fair-
ness. Second, while data augmentation helped
address class imbalance, we did not apply rigor-
ous quality control to synthetic samples, which
risks propagating label noise—especially in under-
represented classes. Third, our work lacks infer-
ence latency metrics and comparisons with mod-
ern large language models (e.g., GPT-4), limit-
ing insight into real-world deployment and per-
formance against current state-of-the-art systems.
Future work should incorporate human-validated
augmentation, efficiency benchmarks, and LLM-
based baselines.
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