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Abstract

Emotions play a fundamental role in the
decision-making process, shaping human ac-
tions across diverse disciplines. The exten-
sive usage of emotion intensity detection ap-
proaches has generated substantial research
interest during the last few years. Efficient
multi-label emotion intensity detection re-
mains unsatisfactory even for high-resource
languages, with a substantial performance gap
among well-resourced and under-resourced
languages. Team Tewodros participated in
SemEval-2025 Task 11, Track B, focusing on
detecting text-based emotion intensity. Our
work involved multi-label emotion intensity de-
tection across three languages: Amharic, En-
glish, and Spanish, using the (afro-xlmr-large-
76L), (DeBERTa-v3-base), and (BERT-base-
Spanish-wwm-uncased) models. The models
achieved an average F1 score of 0.6503 for
Amharic, 0.5943 for English, and an accuracy
score of 0.6228 for Spanish. These results
demonstrate the effectiveness of our models
in capturing emotion intensity across multiple
languages.

1 Introduction

The modern digital era allows users to freely ex-
press their feelings, attitudes, and opinions through
websites, microblogs, and social media platforms
(Wiebe et al., 2005; Mohammad and Kiritchenko,
2018; Mohammad et al., 2018a; Acheampong et al.,
2020; Andalibi and Buss, 2020; Rodríguez-Ibánez
et al., 2023). This has increased interest in extract-
ing user sentiments and emotions towards events
for different purposes, including social media mon-
itoring, product analysis, political promotions, cus-
tomer feedback analysis, and marketing research
(Nandwani and Verma, 2021; Naidoo et al., 2022;
Shehu, 2023; Kusal et al., 2023a; Achamaleh et al.,
2025). Language is not just a medium of com-
munication but also a way to express emotions,
sentiments, and their intensity (Richards, 2022).

The task of emotion classification within NLP
stands as a complex challenge that involves assign-
ing emotional labels to texts to reveal the precise
mental state of writers/users (Alswaidan and Menai,
2020; Tao and Fang, 2020; Mohammad, 2022; Saf-
far et al., 2023). The challenge of emotion detec-
tion exceeds sentiment analysis (Birjali et al., 2021)
because emotions span a wide spectrum and single
texts can contain multiple feelings, while cultural
and linguistic differences impact interpretation and
transferability (Yu, 2022; Kusal et al., 2023b; Wang
et al., 2024b).

Multi-label Emotion Classification (MLEC)
(Ameer et al., 2020; Deng and Ren, 2020; Liu et al.,
2023) involves analyzing complete emotional ex-
pressions within written content, thereby demon-
strating its value as a complex yet fundamental Nat-
ural Language Processing (NLP) task because one
text may convey various simultaneous emotions.
Multi-label classification differs from single-label
by enabling instances to possess different mixture
levels of emotions from the complete emotion set
(Belay et al., 2024). Different machine learning
(ML) algorithms (Azari et al., 2020; Alslaity and
Orji, 2024) such as Naive Bayes (NB), k-nearest
neighbors, and Support Vector Machines (SVM)
have been applied to resolve emotion classifica-
tion problems, often incorporating linguistic and
contextual features for better performance.

The detection method of emotions in coarse-
grained systems only identifies emotions and ig-
nores their intensity level. Traditional emotion
classification approaches can determine whether
a sentence expresses happiness or sadness but do
not quantify how intense the emotion is (Setiawan
and Chowanda, 2023). Fine-grained emotion in-
tensity detection aims to capture these variations,
which is crucial for distinguishing sentences with
the same emotion but different intensities. Detect-
ing emotion intensity requires identifying intensity
words and other linguistic factors that influence the
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degree of emotion expressed in the text (Mashal
and Asnani, 2017; Chutia and Baruah, 2024).

Despite growing research in this domain, most
studies focus on data-rich languages due to the un-
availability of datasets for data-scarce languages
(Magueresse et al., 2020; Abiola et al., 2025b,a).
This gap has led to limited advancements in emo-
tion intensity detection for languages spoken in
linguistically diverse regions such as Africa and
Asia, which together account for over 4,000 lan-
guages (Irwin, 2020; Welmers, 2024).

The workshop organizers launched SemEval-
2025 Task 11: Bridging the Gap in Text-Based
Emotion Detection (Track B) as a response to ad-
dress the current research gap. The task serves
as a research platform that allows scientists and
researchers to build and evaluate multi-label emo-
tion intensity detection methods while targeting
the gap between languages with varying linguistic
resources.

2 Literature Review

The process of emotion classification (EC) analyzes
verbal and nonverbal indicators, including text and
facial expressions, together with body language
and speech, to determine a subject’s emotional state
(Dadebayev et al., 2022; A.V. et al., 2024). The
main goal of EC consists of detecting emotions
through categorization across text expressions, in-
cluding anger, disgust, and fear, together with hap-
piness, sadness, and surprise emotions. Psycholo-
gists argue about essential emotions, but different
psychological frameworks propose between six and
twenty emotions as core (Plutchik, 1980; Frijda,
1988; Parrot, 2001; Russell, 2003).

Several dimensional models of emotion have
been developed, yet only a limited number persist
as dominant frameworks. The Circumplex model
(Russell, 2005) features eight emotional groups
established through 28 emotion words, and the
Positive-and Negative-Activation (PANA) model
demonstrates an emotion ranging from high posi-
tive to low positive activation (Watson and Telle-
gen, 1985). Most researchers in emotional-based
research continue to use Ekman’s model (Ekman,
1992) to divide emotions into six core categories
that include joy, surprise, happiness, anger, sadness,
disgust, and also fear (Hoemann et al., 2020).

The research community has created text min-
ing solutions to analyze emotions on social media
(Goldenberg and Willer, 2023), especially Twitter,

through Naïve Bayes machine learning strategies
(Wikarsa and Thahir, 2015; Mohammad and Bravo-
Marquez, 2017). The tagging of emotions in online
news through multi-source systems is addressed
by researchers who introduce a two-layer logistic
regression model in their approach (Yu et al., 2015;
Bostan and Klinger, 2019). Research in emotion
classification underwent several developments by
integrating word and character n-grams (Moham-
mad, 2012) with sentiment and emotion lexicons
(Mohammad et al., 2015) as well as neural network
models (Felbo et al., 2017; Köper et al., 2017).

There has been an increased emphasis in NLP
research (Graterol et al., 2021) that incorporates
Large Language Models (LLMs) for emotion iden-
tification, mainly within data-rich and data-scarce
languages (Belay et al., 2024; Muhammad et al.,
2025c; Tonja et al., 2024). EmoBench represents a
new assessment method that tests LLMs for detect-
ing emotional origins across English and Chinese
languages, as described by (Sabour et al., 2024).
(Liu et al., 2024) proposed EmoLLMs, fine-tuning
open-source LLMs for affective analysis and emo-
tion prediction. The researchers (Cageggi et al.,
2023) applied MT5 model fine-tuning before con-
ducting evaluations of both FLAN and ChatGPT
through few-shot prompting for multi-label emo-
tion classification.

Mostly used emotion classification datasets ex-
ist, including: (Wang et al., 2024a) SemEval-
2024 Task 3, (Muhammad et al., 2025c) SemEval
Task 11, (Muhammad et al., 2025b,a) BRIGHTER,
(Bianchi et al., 2022) Multilingual Emotion Predic-
tion (XLM-EMO), (Ameer et al., 2023) WASSA
2023 Shared Task 2, (Ciobotaru et al., 2022) Roma-
nian Emotion Dataset (REDv2), (Demszky et al.,
2020) GoEmotions, and Balanced Multi-Label
Emotional Tweets (BMET) (Huang et al., 2021).

The detection of emotion intensity in text (Zad
et al., 2021) has become a core capability of the
multi-label emotion classification (MLEC) pro-
cess to identify emotional levels (Ameer et al.,
2020). The SemEval-2018 Task 1 (Mohammad
et al., 2018b) together with the Multimodal Multi-
label Emotion, Intensity, and Sentiment Dialogue
Dataset (MEISD) (Firdaus et al., 2020) and EmoIn-
Hindi (Singh et al., 2022) demonstrate examples of
emotion classification.

The development of emotion analysis through
deep learning techniques signifies an increasing
preference for sophisticated emotion detection
methods. Distinguishing sentences from the same
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emotion category requires examining their emo-
tional strength because intensity plays a vital role
in these cases (Htait et al., 2016; Refaee and Rieser,
2016; Lenc et al., 2016). The intensity of indi-
vidual words stands as an approach to measure
sentence-level intensity since words that share re-
lated meanings push emotional strength either up-
ward or downward (Alejo et al., 2020).

The detection of emotional intensity in text doc-
uments remains a subject that researchers have
studied comparatively less than sentiment intensity
(Alm et al., 2005; Aman and Szpakowicz, 2007;
Bollen et al., 2009; Neviarouskaya et al., 2009;
Brooks et al., 2013). This gap in research has been
addressed through several notable studies. The
semi-supervised approach defines an adjective in-
tensity scale through contextual analysis of high-
intensity words (Sharma et al., 2015). Sciences
have studied automated approaches for emotional
intensity tagging in sentences with WordNet Affect
alongside word sense disambiguation (de Albornoz
et al., 2010). These research techniques aim to es-
tablish quantitative methods that identify emotional
intensity levels across a given textual content.

The first major attempt to introduce emotion
intensity annotation occurred when (Strapparava
and Mihalcea, 2007) participated in SemEval-2007
shared task competitions. The study employed a
0 to 100 continuous scale through which annota-
tors rated emotions present in newspaper headlines.
The development of rating emotion intensity at a
granular level still encounters specific collection
difficulties. The process faces major problems be-
cause different annotators tend to rate the same
piece of text with substantially varying scores (one
person assigned 79 while another only gave 62).

Researchers have made important progress in
emotion classification, but their work mostly con-
centrates on high-resource languages (Strapparava
and Mihalcea, 2007; Seyeditabari et al., 2018; Chat-
terjee et al., 2019; Kumar et al., 2022), whereas the
investigation of emotion detection within Ethiopian
languages along with other low-resource languages
remains scarce (Muhammad et al., 2025b). Bench-
mark datasets primarily emerge for English to-
gether with popular languages, which impede
proper generalization of research outcomes across
diverse linguistic settings (Yimam et al., 2020; Tela
et al., 2020; Muhammad et al., 2023). The cur-
rent emotion datasets derive from single-source
text corpora, which affect their representativeness,
while state-of-the-art LLMs for both multi-label

and multilingual emotion classification remain un-
derexplored domains (Yimam et al., 2021). Our
team extends this research on Track B of SemEval
2025 Task 11 to address the existing gaps in emo-
tion intensity detection. The assessment task re-
quires emotion annotation with perceived levels
of intensity, which range from 0 for no emotion
to 3 for high intensity according to sadness, fear,
and so on. To detect emotion intensity in high-
and low-resource languages, this work investigates
methods and datasets and demonstrates results. Ex-
tending from the extant literature, it is our intention
to contribute by culturally informed approaches to
improve the efficiency of this task.

3 Methodology

The research methodology included data prepro-
cessing, feature extraction, and text classification
procedures on textual data collected from diverse
sources in English, Spanish, and Amharic lan-
guages. The data was divided into three distinct
sets: training, development, and testing. Each sam-
ple was labeled with one of six emotional states:
surprise, anger, joy, fear, disgust, joy, and sadness.
We loaded the data through Pandas to examine its
structure while confirming essential attributes ex-
ist. We determined emotion frequencies through
value_count functions.

The feature engineering process involved
CountVectorizer’s bigram tokenization technique
alongside a selection of the top 90 bigrams per
language for improving input representation. The
model design included provisions that allowed it
to detect important linguistic patterns regardless of
the text’s language.

The model architecture incorporated Afro-
XLMR-Large-76L for Amharic, DeBERTa-v3-
Base for English, and BERT-Base-Spanish-WWM-
Uncased for Spanish. Different tokenization meth-
ods applied to textual data through model-specific
tokenizers resulted in Hugging Face datasets for
training purposes. The training speed was acceler-
ated by using fp16=True during mixed precision
operations. The training process employed 16 sam-
ples per batch and set the learning rate at 2e-5. A
Trainer class and CrossEntropyLoss module en-
abled the computation of class weights for balanc-
ing class distribution in the training process. The
training process lasted for 20 epochs through early
stopping to avoid overfitting. Multiple performance
metrics, including accuracy, macro F1-score, and
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Figure 1: F1 Comparison Scores of English, Spanish
and Amharic Languages from the Dev Set

per-label F1-score, served to assess model perfor-
mance during evaluation.

4 Dataset Analysis

The SemEval 2025 Task 11 dataset, Track B (Emo-
tion Intensity Detection), originates from the paper
(Belay et al., 2024). The dataset provides labeled
intensity scores for joy, sadness, fear, anger, sur-
prise, and disgust. Our analysis focuses on ex-
amining three languages: English, Spanish, and
Amharic, which represent a mix of high-resource
and low-resource linguistic contexts. The dataset is
compiled from diverse sources, including news por-
tals X (formerly Twitter), YouTube, and Facebook,
capturing a mix of formal and informal emotional
expressions. Social media data poses distinct chal-
lenges, such as the use of abbreviations, informal
phrasing, and extreme variations in emotional inten-
sity, while news articles typically present structured
and neutral emotional tones. Table 1 demonstrats
the emotion distribution across datasets (Train and
Dev) for Spanish, English, and Amharic, illustrat-
ing the varying intensity of all 6 emotional stats.
Through this analysis, we seek to address the gap
in emotion intensity detection for both data-rich
and data-scarce languages, ensuring that models
effectively process diverse grammatical structures
and cultural nuances in emotional expression.

5 Experimental Setup

Experimental Setup Our experiment utilized a
training-validation split on the dataset to ensure
a balanced distribution of emotion intensity labels
for the six perceived emotions: joy, sadness, fear,
anger, surprise, and disgust. Language-specific
preprocessing techniques were applied to address
platform-specific variations and the models were

Figure 2: Precision and Recall Scores Comparison of
Amharic, English and Spanish Languages from the Dev
Set

trained in a high-performance computing environ-
ment for efficient training. For model training, we
fine-tuned Afro-XLMR-Large-76L, DeBERTa-v3-
Base, and BERT-Base-Spanish-WWM-Uncased,
leveraging their capabilities in multilingual and
language-specific emotion detection. Each model
was initialized with pre-trained weights and fine-
tuned on the dataset to capture nuanced emotional
patterns across the six emotion categories. To eval-
uate model performance, we developed a compre-
hensive evaluation pipeline, using accuracy, F1-
score, and Pearson correlation as key metrics to
assess the effectiveness of emotion intensity detec-
tion. Generalization was tested on unseen test data
from different platforms and contexts. Additionally,
we also integrated language-agnostic embeddings
to enhance robustness across multiple languages.
Model hyperparameters were optimized through
experimental tuning to balance precision and com-
putational efficiency in detecting joy, sadness, fear,
anger, surprise, and disgust across varied textual
contexts.

6 Results

Our evaluation focuses on measuring the model’s
effectiveness in detecting emotion intensity across
the three languages: English, Spanish, and
Amharic. We used Pearson correlation (r) as a key
metric to evaluate the alignment between predicted
emotion intensity scores and gold-standard annota-
tions. Table 2 summarizes the model’s performance
across the six emotions: joy, surprise, fear, anger,
disgust, and sadness based on the test set that the
workshop organizer’s provided. Overall, the model
achieved its highest performance in Amharic, fol-
lowed by Spanish and English, suggesting its abil-
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Dataset Anger Disgust Fear Joy Sadness Surprise Total
Spanish (Train) 939 1343 635 1315 635 840 5707
Spanish (Dev) 68 136 63 115 59 83 524
English (Train) 497 0 2573 963 1376 1126 6535
English (Dev) 27 0 96 43 54 43 263
Amharic (Train) 1429 1878 145 883 1211 165 5711
Amharic (Dev) 234 310 22 147 203 31 947

Table 1: Emotion distribution across datasets (Train and Dev) for Spanish, English, and Amharic.

Language Anger Disgust Fear Joy Sadness Surprise Avg. Pearson r

Amharic 0.5406 0.6775 0.5656 0.7997 0.7343 0.5843 0.6503
English 0.4761 - 0.6606 0.7276 0.6162 0.4909 0.5943
Spanish 0.5942 0.6180 0.6764 0.6246 0.6114 0.6124 0.6228

Table 2: Emotion Scores across different Languages

Language Model F1 Score
Amharic afro-xlmr-large-76L 0.6503
English DeBERTa-v3-base 0.5943
Spanish spanish-wwm-uncased 0.6228

Table 3: Results obtained from the testset for emotion
intensity.

ity to capture emotion intensity variations even in
a low-resource language. These findings highlight
the model’s capability to generalize across different
languages, despite variations in linguistic resources
and data availability. Figures 1 and 2 highlight
the F1, precision, and recall scores for all three
languages, while Table 3 presents the F1 score for
each language.

7 Discussion

The F1 Scores of AfroXLMR-Base reached their
highest levels across all languages, especially
Amharic and Spanish, which proves its powerful
multi-language capabilities. DeBERTa succeeded
within English datasets but experienced difficul-
ties working with languages with fewer available
resources. The BERT-based Spanish model per-
formed effectively for Spanish tasks but displayed
a weak translation ability between languages. The
models’ performance suffered mostly because of
class imbalance when identifying rare emotions, in-
cluding disgust and surprise. Transformer models
demonstrated superior performance than traditional
deep learning approaches, as AfroXLMR achieved
the best results in precision and recall metrics. The
research agenda should encompass emotion-based
pre-training and approaches to address imbalanced

classes. Table 3 summarizes the model results.

7.1 Error Analysis

Most misclassifications happened in Amharic, in-
dicating difficulties with low-resource languages
and class imbalance issues. The best F1 score of
AfroXLMR could not prevent it from mistaking
emotions with similar intensity levels, particularly
between sadness and fear. DeBERTa made frequent
mistakes in English by labelling strong emotions
as moderate since they were written with subtle
indicators. The Spanish predictions displayed mis-
interpretations between joy and surprise categories
due to patterns that were similar in the language.
The detection accuracy needs better fine-tuning
of models alongside additional emotional features
and balanced training datasets to achieve superior
outcomes in multilingual emotion inscription de-
tection.

8 Conclusion

This research work used transformer models that
were fine-tuned specifically for Amharic, English,
and Spanish to understand emotional intensity
across the three languages. The research pro-
cess included text preprocessing along with feature
engineering before training Afro-XLMR-Large-
76L, DeBERTa-v3-Base, and BERT-Base-Spanish-
WWM-Uncased models. The tested models exhib-
ited superior performance for detecting emotion
intensity variations in Amharic with an F1 score
of 0.6503, followed by Spanish with an F1 score
of 0.6228, and English with an F1 score of 0.5943.
While our models perform well across multiple
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languages, detection of underrepresented emotions
and low-resource languages remains a challenge.
Future work should focus on exploring data aug-
mentation techniques and developing adaptation
frameworks to achieve better results with multilin-
gual fusion approaches. These advancements will
further enhance emotion intensity detection, ensur-
ing more robust and accurate predictions across
diverse linguistic and cultural contexts.
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