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Abstract

Emotions influence human behavior, speech,
and expression, making their detection crucial
in Natural Language Processing (NLP). While
most prior research has focused on single-label
emotion classification, real-world emotions are
often multi-faceted. This paper describes our
participation in SemEval-2025 Task 11, Track
A (Multi-label Emotion Detection) and Track B
(Emotion Intensity). We employed BERT as a
feature extractor with stacked GRUs, which re-
sulted in better stability and convergence. Our
system was evaluated across 19 languages for
Track A and 9 languages for Track B.

1 Introduction

Emotions play a significant role in shaping human
behavior, speech patterns, and body language. Nat-
ural Language Processing (NLP) plays a crucial
role in analyzing and extracting valuable informa-
tion based on emotions. Earlier research on senti-
ment and emotion analysis has primarily focused
on single-label classification, where a piece of text
is assigned just one emotion or sentiment category,
like “happy" or “sad". However, human emotions
are rarely that simple, people often experience and
express multiple emotions at once. For example, a
movie review might convey both excitement and
disappointment, or a social media post might re-
flect anger and fear simultaneously. Multi-label
emotion classification addresses this complexity
by allowing a system to identify and tag multiple
emotions within the same text, providing a more
accurate and nuanced understanding of human
emotional expression. To address this challenge,
we present our submission for SemEval-2025
Task 11: Bridging the Gap in Text-Based Emo-
tion Detection(Muhammad et al., 2025b) which
is based on “BRIGHTER: BRIdging the Gap in
Human-Annotated Textual Emotion Recognition
Datasets for 28 Languages”(Muhammad et al.,

2025a) and “Evaluating the Capabilities of Large
Language Models for Multi-label Emotion Under-
standing”(Belay et al., 2025). The task is divided
into three tracks and we participated in Track A:
Multi-label Emotion Detection, and Track B: Emo-
tion Intensity. While participating in the task, we
observed that training the model presented several
challenges, particularly with overfitting and data
imbalance. Specifically, when using pre-trained
embeddings like GloVe(Pennington et al., 2014),
the model over-fitted quickly, likely due to its ten-
dency to memorize the training data rather than gen-
eralize to unseen examples. To address the unbal-
anced dataset, we experimented with SMOTE (Syn-
thetic Minority Oversampling Technique) (Chawla
et al., 2002), but this approach did not yield fa-
vorable results, possibly because it introduced syn-
thetic samples that failed to capture the true emo-
tional context of the data. Additionally, we at-
tempted to augment our dataset with data from the
SemEval-2018 Affect in Tweets(Mohammad et al.,
2018) task to enrich the training set. However, this
also did not improve performance. Finally we used
BERT as feature extractor with two stacked layer
of Gated Recurrent Units(GRUs) to overcome un-
stable training and achieve better convergence on
overall (per language) dataset. We participated in a
total of 19 languages for Track A and 9 languages
for Track B.

2 Related Works

In the past most of emotion or sentiment analysis
related work heavily relied on machine learning
based approaches (Mullen and Collier, 2004);(Jain
et al., 2017). Such work critically depended on
hand-crafted features.

(Kar et al., 2017), provides two different method-
ologies to work on sentiment analysis on financial
data. They used both machine learning based ap-
proach and deep learning technique in their study.
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In latter one, they incorporated Convolution Neural
Network (CNN) (LeCun et al., 1989) and GRU to
predict sentiment of financial data.

(Baziotis et al., 2018), at SemEval-2018 Task
1, proposed a Bidirectional Long short-term
memory(Hochreiter and Schmidhuber, 1997) (Bi-
LSTM) architecture equipped with a multi-layer
self attention mechanism. They used a set of
word2vec word embeddings that were enhanced
by a set of word emotional attributes and trained
on an extensive collection of 550 million Twitter
messages.

(Ameer et al., 2023), proposed models, based
on Bi-LSTM with multiple attention layers, im-
plemented n independent attention mechanisms
for n emotion labels, where each attention mecha-
nism learns information specific to its correspond-
ing emotion label. The study also implemented
transformer models with multiple attention (MA)
layers, including XLNet-MA, DistilBERT-MA,
and RoBERTa-MA. Multiple attention mechanisms
were incorporated into the output of these Trans-
former models, and the models were fine-tuned on
the datasets.

3 System Overview

3.1 Logarithmic Weights Calculation

To address class imbalance in the dataset, logarith-
mic weighting is employed to adjust the contribu-
tion of each class. The logarithmic weights are
determined using the formula:

wi = log

(
1 +

total samples
class totalsi

)
(1)

Here, each class weight is derived by taking the
natural logarithm of the inverse class frequency,
scaled by the total sample count. This approach en-
sures that underrepresented classes receive higher
weights, mitigating the effects of class imbalance
during model training.

To maintain a relative scale, the computed
weights are normalized by dividing by the mini-
mum weight value:

wi =
wi

min(w)
(2)

This ensures that the smallest weight is set to
1 while preserving relative differences among
classes.

3.2 BERT Embedding

BERT (Bidirectional Encoder Representations
from Transformers), introduced by (Devlin et al.,
2019), is a transformer-based model designed for
natural language processing tasks. Unlike tradi-
tional models that process text uni-directionally,
BERT leverages bidirectional context, pre-training
on large corpora to capture deep semantic and syn-
tactic relationships. For English, we used bert-
base-uncased as the feature extractor, while for Chi-
nese, we employed bert-base-chinese, and for Ger-
man, we utilized bert-base-german-cased. For all
other languages, we relied on multilingual BERT
(mBERT) from Hugging Face. We are using these
models for the task of multi-label emotion detec-
tion and emotion intensity prediction.

3.3 Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRUs), proposed by (Cho
et al., 2014), are a type of recurrent neural net-
work (RNN) designed to model sequential data
efficiently. GRUs simplify traditional RNNs by
using update and reset gates to control informa-
tion flow, mitigating issues like vanishing gradi-
ents while maintaining performance comparable
to Long Short-Term Memory (LSTM) units. In a
bidirectional GRU (Bi-GRU), the model processes
sequences in both forward and backward directions,
capturing past and future context simultaneously.
This bidirectional approach enhances the model’s
ability to understand dependencies in text, making
it particularly effective for tasks requiring compre-
hensive sequence comprehension, such as emotion
detection. We used 128 hidden states in the Bi-
GRU for this task to balance model capacity and
computational efficiency.

3.4 Output Layer

The output layer of the model is designed to trans-
form the processed features into predictions for
the target emotion labels. It consists of a dense
layer that takes an input dimensionality equal to
twice the hidden dimension, reflecting the com-
bined forward and backward representations from
the bidirectional GRU. This layer maps these fea-
tures to a set of output scores, where each score
corresponds to one of the emotion categories in the
multi-label task.
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Figure 1: Proposed Model (BERT + Bi-GRU)

4 Experimental Setup

Preprocessing was minimal across the languages
studied. For languages other than English, no pre-
processing steps were applied. For English, only
basic operations were performed, including lower-
casing text and expanding contractions, to stan-
dardize the input data. To train the model, we uti-
lized BCEWithLogitsLoss as the loss function for
multi-label classification, COnsistent RAnk Log-
its (CORAL) (Cao et al., 2020) as the loss func-
tion for emotion intensity, employed the AdamW
(Loshchilov and Hutter, 2019) optimizer for effi-
cient parameter updates, and implemented early
stopping to prevent overfitting.

5 Results

5.1 Track A

Table 2 presents the macro F1 scores for different
models evaluated on the test dataset for SemEval-
2025 Task 11 Track A. Our model, denoted as
Ours (SyntaxMind), is compared against PAI, PA-

Parameters Track A Track B
Batch size 2 16
Learning rate 1× 10−5 1× 10−5

Loss function BCEWithLogitsLoss CORAL
Optimizer AdamW AdamW
Dropout 0.3 0.3
Hidden Units 128 256

Table 1: Hyperparameter values

oneteam-1, and the SemEval Baseline across 19
languages.

Among the 19 languages, our model achieved
competitive results in several cases but lagged be-
hind the top-performing models. For high-resource
languages such as English (eng), Spanish (esp),
and Hindi (hin), our model achieved macro F1
scores of 0.6646, 0.5739, and 0.6508, respectively.
While these results are reasonable, they remain
lower than the best-performing model (PAI), which
achieved 0.823, 0.8488, and 0.9197, respectively.
Similarly, our model performed moderately well on
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Language PAI PA-oneteam-1 Ours (SyntaxMind) SemEval Baseline
afr 0.6986 0.6092 0.3649 0.3714
arq 0.6687 0.6623 0.4567 0.4141
ary 0.6292 0.621 0.3733 0.4716
chn 0.7094 0.6877 0.5578 0.5308
deu 0.7399 0.7355 0.4868 0.6423
eng 0.823 0.821 0.6646 0.7083
esp 0.8488 0.8454 0.5739 0.7744
hin 0.9197 0.9194 0.6508 0.8551
mar 0.8843 0.9058 0.7245 0.822
ptbr 0.6833 0.6735 0.3142 0.4257
ptmz 0.5477 0.5033 0.3706 0.4591
ron 0.7943 0.7794 0.6171 0.7623
rus 0.8823 0.9087 0.6596 0.8377
sun 0.5414 0.5072 0.3556 0.3731
swa 0.3848 0.3504 0.2408 0.2265
swe 0.6262 0.6162 0.4331 0.5198
tat 0.8459 0.837 0.4912 0.5394
ukr 0.7256 0.7199 0.315 0.5345
yor 0.4613 0.457 0.2614 0.0922

Table 2: Comparison of macro F1 scores across 19 languages on the test dataset for SemEval-2025 Task 11 Track A

Language PAI PA-oneteam-1 Ours (SyntaxMind) SemEval Baseline
arq 0.6497 0.6338 0.1576 0.0164
chn 0.7224 0.6946 0.4791 0.4053
deu 0.7657 0.7654 0.3886 0.5621
eng 0.8404 0.8339 0.5537 0.6415
esp 0.808 0.7797 0.3916 0.7259
ptbr 0.71 0.6932 0.2363 0.2974
ron 0.726 0.7196 0.3682 0.5566
rus 0.9254 0.9175 0.5259 0.8766
ukr 0.7075 0.6773 0.1912 0.3994

Table 3: Comparison of Pearson Correlation scores across 9 languages on the test dataset for SemEval-2025 Task 11
Track B

German (deu) and Russian (rus), obtaining 0.4868
and 0.6596, respectively.

In low-resource languages such as Yoruba (yor),
Swahili (swa), and Sundanese (sun), the perfor-
mance of all models declined significantly. Our
model achieved macro F1 scores of 0.2614, 0.2408,
and 0.3556, respectively.

For Arabic dialects, including Algerian Arabic
(arq) and Moroccan Arabic (ary), our model ob-
tained scores of 0.4567 and 0.3733, whereas PAI
achieved 0.6687 and 0.6292, respectively. A sim-
ilar trend was observed for Portuguese variants,
where our model’s performance on Brazilian Por-
tuguese (ptbr) and Mozambican Portuguese (ptmz)
was 0.3142 and 0.3706, lower than the leading

model’s 0.6833 and 0.5477, respectively.
Our model demonstrated moderate performance

in languages such as Romanian (ron), Ukrainian
(ukr), and Tatar (tat), with macro F1 scores of
0.6171, 0.315, and 0.4912, respectively. Despite
this, the highest-performing models achieved sig-
nificantly better scores.

Though we have beaten the SemEval Baseline
model results in the arq, chn, swa, and yor lan-
guages.

5.2 Track B

Table 3 shows the results of our system indicate
that while it performs moderately well in some lan-
guages, there is a significant gap compared to the
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top-performing systems. The highest Pearson Cor-
relation score out model achieved in 0.4791 for Chi-
nese (chn), while the lowest is 0.1576 for Arabic
Algerian (arq). Across all nine languages, our sys-
tem consistently lags behind PAI and PA-oneteam-
1, suggesting limitations in capturing the nuances
of emotion intensity. Notably, performance is par-
ticularly weak for Arabic Algerian (arq), Ukrainian
(ukr), and Brazilian Portuguese (ptbr), indicating
potential challenges in handling certain linguistic
structures or data limitations. Compared to the Se-
mEval Baseline, our system performs better in most
cases but still requires significant improvements.

6 Conclusion

In this paper, we demonstrate our proposed model
(BERT + GRU) for tackling the multi-label emo-
tion challenge. Although our performance was not
optimal, we intend to improve our model in the
coming days. We also aspire to participate in Track
3 (Cross-lingual Emotion Detection) in the future.
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