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Abstract

This paper presents a multi-step zero-shot sys-
tem for SemEval-2025 Task 1 on Advancing
Multimodal Idiomaticity Representation (Ad-
MIRe). The system employs two state-of-the-
art multimodal language models, Claude Son-
net 3.5 and OpenAI GPT-4o, to determine id-
iomaticity and rank images for relevance in
both subtasks. A hybrid approach combining
o1-preview for idiomaticity classification and
GPT-4o for visual ranking produced the best
overall results. The system demonstrates com-
petitive performance on the English extended
dataset for Subtask A, but faces challenges in
cross-lingual transfer to Portuguese. Compar-
ing Image+Text and Text-Only approaches re-
veals interesting trends and raises questions
about the role of visual information in multi-
modal idiomaticity detection.

1 Introduction

The SemEval-2025 Task 1 tests multimodal lan-
guage models’ ability to understand idioms by hav-
ing them rank images based on how well they
match idiomatic or literal uses of expressions in
context, addressing previous datasets’ limitations
and exploring whether adding visual information
can improve models’ comprehension of figurative
language; the task consists of two subtasks: rank-
ing 5 images based on how well they match an
idiomatic expression used in a sentence (Subtask
A), and selecting the most appropriate final image
to complete a 3-image sequence while determin-
ing if the expression is being used idiomatically or
literally (Subtask B) (Pickard et al., 2025).

The data consists of a text file containing the
textual data (expression, sentence, image names)
and subfolders for each expression containing the
images proper. The data is provided by the orga-
nizers and partitioned into Train/Dev/Test, plus an
additional Extended test set. Table 1 summarizes
the data for both Subtask A and B.

Data # items

Subtask A Subtask B

English
Train 70 20
Dev 15 5
Test 15 5
Extended 100 30

Portuguese
Train 32 -
Dev 10 -
Test 13 -
Extended 55 -

Table 1: Data summary

2 Related Work

Recent advancements in multimodal language mod-
els and the growing availability of datasets that inte-
grate textual and visual information have propelled
the task of multimodal idiomaticity representation
and detection to the forefront of research (Filippa-
tou, 2024; Pickard et al., 2025). However, even
state-of-the-art language models, including large
language models (LLMs), struggle to match human
performance in comprehending idiomatic expres-
sions (Tayyar Madabushi et al., 2021; Chakrabarty
et al., 2022; Phelps et al., 2024). To bridge this gap,
multimodal representation learning models, such
as CLIP (Radford et al., 2021), Flamingo (Alayrac
et al., 2022), and generative models such as GPT-4
(OpenAI et al., 2024), have emerged as promising
solutions, exhibiting strong performance in tasks
that require cross-modal understanding, making
them particularly well-suited for idiomaticity de-
tection.

Cross-lingual transfer remains a challenging area
in multimodal contexts, with models like mBERT
(Devlin et al., 2019) and XLM-R (Conneau and
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Lample, 2019) often experiencing performance
degradation when applied to multimodal datasets.
Recent studies have explored methods for improv-
ing cross-lingual transfer, such as multilingual em-
beddings and adversarial training (Wang et al.,
2021), but consistent performance across diverse
languages is yet to be achieved. Hybrid approaches
that combine the strengths of multiple models are
increasingly adopted for complex multimodal tasks
(Guo et al., 2024). The role of visual information
in idiomaticity detection remains an open question,
with some studies suggesting that visual cues can
enhance accuracy (Gu et al., 2023), while others
argue that their contribution is context-dependent
(Gupta et al., 2022). Artifacts present in existing
datasets may allow models to perform well at id-
iomaticity detection without necessarily develop-
ing high-quality representations of the semantics of
idiomatic expressions (Boisson et al., 2023). How-
ever, good representations of idioms are crucial for
downstream applications such as sentiment analy-
sis, machine translation, and natural language un-
derstanding (Tayyar Madabushi et al., 2021).

3 Methodology

3.1 System Overview

Our system for SemEval-2025 Task 1: Multimodal
Idiomaticity employs two state-of-the-art multi-
modal language models: Claude Sonnet 3.5 and
OpenAI GPT-4o.1 Given the performance on the
original test dataset, we opt to use only OpenAI
for the extended dataset.2 The system first deter-
mines whether the expression in the given context
is used idiomatically or literally using a zero-shot
classification approach. For Subtask A, the input
is the provided sentence, while for Subtask B, the
image descriptions of the first two images in the
sequence are used. The model then ranks the can-
didate images based on their relevance to the literal
or idiomatic interpretation of the expression.

We selected Claude and OpenAI models for their
state-of-the-art multimodal reasoning capabilities,
strong zero-shot performance, and complementary
strengths in handling both textual and visual in-
puts. Both models exhibit efficient and tightly
integrated vision-language processing, which is
especially valuable in multimodal tasks, and ro-
bust multilingual understanding. Both models are

1Parameters and prompts can be found in Appendix A
2We implement a fallback to Claude in case the model

responds with “I apologize..." or “I’m unable to...”

widely regarded for their reliability, accessibility
through stable APIs, and support for intermediate
reasoning chains, making them well-suited for a
hybrid system with an intermediate interpretation
step.While alternative models like Gemini, LLaVA,
or open-source LLMs (e.g., LLaMA or Mistral-
based variants) were considered, they either lacked
comparable multimodal maturity, cross-lingual ro-
bustness, or were not readily deployable at the time
of experimentation. The selected models provided
a pragmatic balance of performance, versatility,
and ease of integration.

3.2 Idiomaticity Classification

To determine whether the expression is being used
idiomatically or literally, we employ a zero-shot
classification approach using the pre-trained lan-
guage models. For Subtask A, the input sentence is
directly fed to the model, while for Subtask B, the
concatenated image descriptions of the first two im-
ages in the sequence are used. The model predicts
the idiomaticity label based on its understanding of
the expression in context, without any additional
fine-tuning or examples provided during the task.

3.3 Image Ranking

Once the idiomaticity of the expression has been
determined, the model is tasked with ranking the
candidate images based on their relevance to the
literal or idiomatic interpretation. For both Subtask
A and B, the target expression and the predicted
idiomaticity label are used to construct the prompt.
The model then scores each candidate image using
its knowledge of the expression’s meaning and the
visual content, producing a ranked list.

3.4 Improvement for Portuguese

Upon observing subpar performance on the Por-
tuguese subset of the data, we experiment with
translating some of the prompts to Portuguese be-
fore feeding them to the model. This allows the
model to better understand the nuances of the ex-
pressions in their original language context. The
translations are performed using GPT-4o.

3.5 Explanation-based Ranking

As an additional experiment for Subtask A, we
introduce an intermediate explanation step to im-
prove the model’s understanding of the expression
in context. After classifying the idiomaticity, the
model is prompted to provide a brief explanation
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of the literal or idiomatic meaning of the expres-
sion as used in the sentence. This explanation is
then incorporated into the prompt for ranking the
images, providing additional context to guide the
model’s selection.

3.6 Hybrid Approach with o1-preview and
GPT-4o

In an effort to further improve the system’s perfor-
mance, we investigated a hybrid approach lever-
aging the complementary strengths of OpenAI o1-
preview and GPT-4o. o1-previewexhibits strong
performance on natural language understanding
and generation tasks. We employ o1-preview
for the idiomaticity classification and explanation
steps, capitalizing on its robust language under-
standing capabilities. However, as o1-preview does
not have the capability to directly process and rea-
son about images, we continue to use GPT-4o for
the visual ranking component. This hybrid strategy
allows us to benefit from o1-preview’s language
understanding while still incorporating the visual
reasoning capabilities necessary for the task. Inter-
estingly, we found that this combination of models
produced the best overall results on the SemEval-
2025 Task 1 datasets, suggesting that the strengths
of the two models are indeed complementary and
can be effectively combined to tackle multimodal
idiomaticity challenges.

3.7 Output Parsing and Post-processing

A key challenge in using large language models
like GPT-4o for this task is that their generated
outputs do not always strictly adhere to the speci-
fied prompt format, necessitating robust parsing
and post-processing steps. For instance, when
prompted to provide a ranking of the candidate
images, the model’s response may not be a well-
formed array or list, requiring additional effort to
extract the intended ranking. Additionally, we ob-
served that the model occasionally produces rank-
ings that are offset by one position, likely due to
confusion about whether to use zero-based or one-
based indexing. To mitigate these issues, we im-
plement a flexible parsing system that can handle a
variety of potential output formats. This includes
using regular expressions to identify and extract
ranked lists or arrays, as well as heuristics to detect
and correct off-by-one errors in the rankings. By
applying these post-processing techniques, we en-
sure that the final output of our system is consistent
and aligns with the expected format for evaluation,

even if the raw model outputs are somewhat noisy
or inconsistent.

3.8 Evaluation

The system’s performance is evaluated using the
official metrics for each subtask. For Subtask A,
we calculate the average ranking score across all
test instances. For Subtask B, we measure both the
ranking score and the idiomaticity classification
accuracy. The submitted rankings and labels are
compared against the gold standards provided by
the task organizers. We report results on both the
original and extended English datasets, as well as
the Portuguese subset, to assess the effectiveness
of our proposed improvements.

4 Results and Discussion

Tables 2 and 3 show the results for Subtask A
and Subtask B, respectively. Additional plots can
be found in Appendix B. Claude models are pre-
fixed with C-, while OpenAI models are prefixed
with O-. DR stands for “Detect [idiomaticity] and
Rank”, DER stands for “Detect, Explain, Rank”.
DER2 models use o1-preview as reasoning LLM
and GPT-4o as ranking LLM. Note that the DER
and DER2 models were only used in Subtask A
Image+Text. For Portuguese, models suffixed with
-P use prompts translated into Portuguese.

4.1 Subtask A: Image and Text

Our system achieves competitive performance on
the English extended dataset for Subtask A, which
involves ranking images based on their relevance
to an idiomatic or literal expression in a given sen-
tence. The best-performing model, O-DER2, at-
tains an overall accuracy of 0.81, only slightly
behind the top score of 0.83 reported by other
participants. This result demonstrates the effec-
tiveness of our hybrid approach combining o1-
preview for idiomaticity classification and GPT-4o
for image ranking. Binary classification scores (lit-
eral/idiomatic) are quite high, with accuracies of
0.93 on English, 0.97 on English Extended, 0.85
on Portuguese and 0.75 on Portuguese Extended.

Interestingly, the model exhibits a higher accu-
racy on literal expressions (0.94) compared to id-
iomatic ones (0.65), suggesting that identifying and
ranking images for literal language use is an eas-
ier task. The Discounted Cumulative Gain (DCG)
metric, which assesses the quality of the ranked
image lists, shows a similar trend, with a higher
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Model Acc all Acc lit Acc id Corr all Corr lit Corr id DCG all DCG lit DCG id

Image and Text

English
C-DR 0.66 0.86 0.50 0.15 0.01 0.26 3.17 3.37 3.00
O-DR 0.80 0.86 0.75 0.17 0.10 0.22 3.30 3.35 3.26
O-DER 0.80 0.86 0.75 0.17 0.10 0.22 3.30 3.35 3.26
O-DER2 0.87 0.86 0.88 0.52 0.29 0.73 3.43 3.35 3.49
English Extended
O-DER 0.78 0.79 0.76 0.40 0.45 0.34 3.30 3.33 3.25
O-DER2 0.81 0.94 0.65 0.43 0.56 0.28 3.35 3.54 3.13
Portuguese
C-DR 0.46 0.29 0.67 0.11 0.23 -0.03 2.74 2.58 3.03
O-DR 0.46 0.29 0.67 0.21 0.20 0.22 2.80 2.51 3.10
O-DER 0.62 0.43 0.83 0.12 0.14 0.08 3.01 2.71 3.35
O-DER-P 0.69 0.42 1.0 0.29 0.27 0.32 3.11 2.72 3.56
O-DER2-P 0.77 0.57 1.0 0.41 0.21 0.63 3.31 3.04 3.63
Portuguese Extended
O-DER-P 0.51 0.33 0.64 0.26 0.27 0.25 2.90 2.58 3.15
O-DER2-P 0.56 0.42 0.68 0.23 0.20 0.24 2.95 2.66 3.17

Text Only

English
C-DR 0.60 0.43 0.75 0.35 0.27 0.41 3.04 2.85 3.21
O-DR 0.66 0.57 0.75 0.21 0.07 0.34 3.07 3.10 3.04
English Extended
O-DR 0.33 0.48 0.15 0.09 0.18 -0.01 2.61 2.90 2.28

Table 2: Results for Subtask A. Best scores per column and test set in bold. Bold omitted for last row.

score for literal expressions (3.54) than idiomatic
ones (3.13).

On the Portuguese subset, our best model, O-
DER2-P, achieves an overall accuracy of 0.77, with
perfect performance on idiomatic expressions (1.0)
but lower accuracy on literal ones (0.57). The DCG
scores follow a similar pattern, with idiomatic ex-
pressions (3.63) outperforming literal ones (3.04).
These results highlight the challenges of cross-
lingual transfer and the need for further improve-
ment in handling Portuguese idioms.

4.2 Subtask A: Text Only

In the text-only setting for Subtask A, our system
demonstrates mixed performance. On the English
dataset, the O-DR model achieves an overall ac-
curacy of 0.66, with higher accuracy on idiomatic
expressions (0.75) compared to literal ones (0.57).
The DCG scores are relatively balanced, with 3.10
for literal expressions and 3.04 for idiomatic ones.

However, on the English extended dataset, the

performance drops significantly, with an overall
accuracy of 0.33 and a notable decrease in perfor-
mance on idiomatic expressions (0.15) compared to
literal ones (0.48). This suggests that the extended
dataset introduces more challenging and diverse
examples that require further improvements in our
text-based idiomaticity classification approach.

Comparing the Text-Only results to the Im-
age+Text setting, we observe that the inclusion
of visual information generally improves perfor-
mance, particularly on the English extended dataset.
This highlights the importance of leveraging multi-
modal information for idiomaticity detection, espe-
cially in more complex and diverse scenarios.

4.3 Subtask B: Image and Text

In the image+text setting for Subtask B, our system
achieves mixed performance on the English dataset.
The O-DR model obtains an overall item accuracy
of 0.60, with perfect accuracy on idiomatic expres-
sions (1.0) but zero accuracy on literal ones (0.0).
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Model Item all Item lit Item id Sent all Send lit Sent id

Image and Text

English
C-DR 0.20 0.0 0.33 0.80 1.0 0.67
O-DR 0.60 0.0 1.0 1.0 1.0 1.0
English Extended
O-DR 0.23 0.17 0.33 0.77 0.94 0.50

Text Only

English
C-DR 0.60 0.50 0.07 0.8 1.0 0.67
O-DR 1.0 1.0 1.0 1.0 1.0 1.0
English Extended
O-DR 0.60 0.78 0.33 0.77 0.94 0.50

Table 3: Results for Subtask B. Best scores per column and test set in bold. Bold omitted for English Extended.

However, the model achieves perfect sentence accu-
racy (1.0) for both literal and idiomatic expressions.

On the English extended dataset, the O-DR
model’s performance drops, with an overall item
accuracy of 0.23 and sentence accuracy of 0.77.
The model performs better on idiomatic expres-
sions (0.33 item accuracy, 0.50 sentence accuracy)
compared to literal ones (0.17 item accuracy, 0.94
sentence accuracy). This suggests that the extended
dataset presents more challenging cases for image
selection and idiomaticity classification, requiring
further improvements in our multimodal approach.

4.4 Subtask B: Text Only

For Subtask B, which involves selecting the most
appropriate final image to complete a 3-image se-
quence while determining the idiomaticity of the
expression, our system demonstrates strong per-
formance using only textual information. On the
English dataset, the O-DR model achieves perfect
scores across all metrics, correctly identifying the
idiomaticity and selecting the appropriate final im-
age for both literal and idiomatic expressions.

However, on the English extended dataset, the
performance drops significantly, with an overall
accuracy of 0.6 and lower scores on idiomatic ex-
pressions (0.33) compared to literal ones (0.78).
This suggests that the extended dataset introduces
more challenging and diverse examples that require
further improvements in our text-based idiomaticity
classification and image selection approach.

4.5 Comparison between Image+Text and
Text Only

Comparing the results of Subtask A (Image+Text)
and Subtask B (Text Only) reveals an interesting
trend. While the inclusion of visual information in
Subtask A generally improves performance, partic-
ularly on the English extended dataset, the text-only
approach in Subtask B surprisingly outperforms the
Image+Text approach on the English dataset. This
suggests that the textual context alone can be suf-
ficient for identifying idiomaticity and selecting
appropriate images in some cases, and that the in-
tegration of visual information may introduce addi-
tional complexity or noise. However, it is important
to note that the English extended dataset results for
Subtask B show a significant drop in performance
compared to the English dataset, indicating that
the text-only approach may not generalize well to
more diverse and challenging examples. Further
investigation is needed to understand the factors
contributing to this performance gap and to develop
more robust multimodal approaches that can effec-
tively leverage both textual and visual information.

4.6 Portuguese Performance

The results on the Portuguese subset for Subtask
A highlight the challenges of cross-lingual transfer
in multimodal idiomaticity detection. Despite the
improvements achieved by translating the prompts
to Portuguese and incorporating explanations, the
overall performance remains lower compared to
the English datasets. This suggests that there may
be linguistic and cultural differences in idiomatic
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Test set Rank (O) Rank (E)

Subtask A
English (T+I) 5 2
English (TO) 3 5
Portuguese (T+I) 4 4

Subtask B
English (T+I) 1 2
English (TO) 1 2

expressions that require further adaptation and fine-
tuning of the models.

4.7 Overall Performance

In comparison to other submissions, according to
the official leaderboard, our best models rank as
follows: for Subtask A (Text+Image), we rank fifth
on the original and second on the extended test set,
for Subtask A (Text Only), we rank third and fifth,
for Subtask A (Text+Image) Portuguese, we rank
fourth on both test sets. For Subtask B, we rank
first and second in both modalities.

5 Conclusion

In this paper, we present a multi-step zero-shot
system for the SemEval-2025 Task 1 on Advanc-
ing Multimodal Idiomaticity Representation (Ad-
MIRe). Our approach leverages state-of-the-art
multimodal language models, including Claude
Sonnet 3.5, OpenAI GPT-4o, and o1-preview, to
address the challenges of idiomaticity detection
and image ranking in both literal and idiomatic
contexts.

The system demonstrates competitive perfor-
mance on the English extended dataset for Sub-
task A, achieving an overall accuracy of 0.81 us-
ing a hybrid approach that combines o1-preview
for idiomaticity classification and GPT-4o for vi-
sual ranking. However, cross-lingual transfer to
Portuguese remains a challenge, highlighting the
need for further research in adapting multimodal id-
iomaticity detection systems to different languages
and cultural contexts.

Our analysis of the Image+Text and Text-Only
approaches reveals interesting trends, with the Text-
Only approach surprisingly outperforming the Im-
age+Text approach on the English dataset for Sub-
task B. This raises questions about the role and
effectiveness of visual information in multimodal
idiomaticity detection, and calls for further inves-
tigation into the factors contributing to the perfor-

mance differences across datasets and subtasks.
Future work should investigate the factors con-

tributing to the performance differences between
Image+Text and Text-Only approaches across
datasets and subtasks to develop more effective
multimodal idiomaticity detection.

Limitations

While our system demonstrates competitive per-
formance on the SemEval-2025 Task 1 datasets,
there are several limitations that should be acknowl-
edged:

1. Our system relies on zero-shot classification
for idiomaticity detection, which may not cap-
ture the full complexity and nuance of id-
iomatic expressions across different contexts
and languages. Fine-tuning the models on
task-specific data could potentially improve
performance and generalization.

2. Although we experimented with translating
prompts to Portuguese, our cross-lingual eval-
uation is limited to a single language. To as-
sess the true effectiveness of our approach for
multilingual idiomaticity detection, it would
be necessary to evaluate on a wider range
of languages and idioms. Reliance on pre-
trained models: Our system heavily relies
on the capabilities of pre-trained multimodal
language models, such as GPT-4o and o1-
preview. While these models have demon-
strated strong performance on various tasks,
they may have inherent biases or limitations
that could impact the system’s performance
on specific idioms or cultural contexts.

3. The use of large pre-trained models in our
system makes it challenging to interpret the
decision-making process behind the idiomatic-
ity classifications and image rankings. Devel-
oping more interpretable and explainable mod-
els could provide insights into the system’s
behavior and potential areas for improvement.

4. The use of large pre-trained models like GPT-
4o and o1-preview requires significant com-
putational resources, which may limit the ac-
cessibility and scalability of our approach for
researchers and practitioners with limited re-
sources.
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A Parameters and prompts

Claude 3.5 Sonnet

max_tokens 8192
temperature 0

OpenAI GPT-4o

No additional parameters were provided to the model.

Table 4: Parameters provided to the models
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Subtask A

System You are a skilled linguist with deep knowledge of idiomatic expressions. You can
easily distinguish between idiomatic and non-idiomatic uses of phrases in English and
Portuguese.

User In the following sentence, is the expression expression used idiomatically or literally?
Expression: expression Sentence: sentence Answer only with ’idiomatic’ or ’literal’

System (I+T) You are an expert in semantic analysis and image relevance evaluation. Given a
classification of an expression as idiomatic or literal, your task is to: Assign each of
five provided images to one of the following categories: 1. Synonym for the idiomatic
meaning of the expression. 2. Synonym for the literal meaning of the expression.
3. Related to the idiomatic meaning, but not synonymous. 4. Related to the literal
meaning, but not synonymous. 5. A distractor unrelated to either meaning. Rank
the images based on their relevance to the identified meaning of the expression: -
Synonyms should be ranked highest. - Related images should be ranked next. -
Distractors should always be ranked lowest.

User (I+T) Rank the following images for the expression expression used in a idiomatic/literal way,
from most relevant to least relevant. Return an array of five numbers that correspond
to the image numbers, like [1,4,3,2,5]. image data

User (T) Rank the following sentences for the expression expression used in a idiomatic/literal
way, from most relevant to least relevant. Return an array of five numbers that
correspond to the sentence numbers, like [0,3,2,1,4]. 1. caption1 2. caption2 3.
caption3 4. caption4 5. caption5

System You are an expert in linguistic analysis with a deep understanding of idiomatic and
literal expressions in English/Portuguese. Your task is to provide a clear explanation
of an idiomatic or literal expression.

User Explain expression used in a idiomatic/literal way.
User (I+T) Given the following explanation of the expression expression used in a idiomatic/literal

way, rank the images from most relevant to least relevant. Return an array of five num-
bers that correspond to the image numbers, like [1,4,3,2,5]. Explanation: explanation,
image data

System (I+T) Você é um especialista em análise semântica e avaliação de relevância de imagens.
Dada a classificação de uma expressão como idiomática ou literal, sua tarefa é: Atribuir
cada uma das cinco imagens fornecidas a uma das seguintes categorias: 1. Sinônimo
para o significado idiomático da expressão. 2. Sinônimo para o significado literal
da expressão. 3. Relacionado ao significado idiomático, mas não sinônimo. 4.
Relacionado ao significado literal, mas não sinônimo. 5. Um distrator não relacionado
a nenhum dos significados. Classificar as imagens com base na sua relevância para o
significado identificado da expressão: - Os sinônimos devem ser classificados como os
mais relevantes. - As imagens relacionadas devem ser classificadas em seguida. - Os
distratores devem sempre ser classificados como os menos relevantes.

User (I+T) Dada a seguinte explicação da expressão expression usada de forma idiomatic/literal,
classifique as imagens da mais relevante para a menos relevante. Retorne um array
de cinco números que correspondem aos números das imagens, como [1,4,3,2,5].
Explicação: explanation, image data

Table 5: Prompts for Subtask A. The first block describes the DR approach. The second block describes the
additional prompts used for DER. The third block shows the translations used for Portuguese. Prompts only used
for Image+Text are marked with (I+T), while prompts used only for text are marked (T)
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Subtask B

System You are a skilled linguist with deep knowledge of idiomatic expressions.
User Given the following sentences, is the expression most likely used literally or idiomati-

cally? Answer only with ’idiomatic’ or ’literal’! Expression: expression Sentences:
sentences

System (I+T) You are a skilled visual artist specialized in images that convey idiomatic or literal
meanings. You can easily rank images in terms of relevance to idiomatic and non-
idiomatic uses of phrases in English. Respond only with a number.

User (T) Given the following expression used in a idiomatic/literal way, and the following
description, which of the following four sentences best continues the description.
Respond only with the sentence number (1,2,3,4). Expression: expression Description:
sentences 1. caption1 2. caption2 3. caption3 4. caption4

User (I+T) Given the following expression used in a idiomatic/literal way, and the following two
images, which of the following four images best continues the description. Respond
only with the image number (1,2,3,4). Expression: expression, image data

Table 6: Prompts for Subtask B. Prompts only used for Image+Text are marked with (I+T), while prompts used only
for text are marked (T)
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B Results: Plots
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Figure 1: Comparison of accuracy for literal vs. idiomatic expressions on English dataset (Image+Text)
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Figure 2: Comparison of accuracy for literal vs. idiomatic expressions on Portuguese dataset (Image+Text)
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Figure 3: Comparison of performance between Image+Text and Text-Only approaches on English dataset
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Figure 4: Comparison of best-performing models on English and Portuguese datasets
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Figure 5: Comparison of model performance across English (EN) and Portuguese (PT) datasets with Image+Text
modality
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