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Abstract

We present a submission to the SemEval 2025
shared task on unlearning sensitive content
from LLMs. Our approach employs negative
preference optimization using low-rank adap-
tation. We show that we can utilize this com-
bination to efficiently compute additional reg-
ularization terms, which help with unlearning
stabilization. The results of our approach sig-
nificantly exceed the shared task baselines.

1 Introduction

Transformer-based Large Language Models (LLM)
trained on large data corpora have shown remark-
able performance in many natural language pro-
cessing tasks. However, their ability to remember
portions of the training data (Carlini et al., 2021)
might raise legal, ethical, and other issues. These
consist of LLMs regurgitating copyright-protected
creative content learned from the Web or private
personal information such as social security num-
bers, addresses, and others. For the latter, regu-
lations such as the EU’s General Data Protection
Regulation (GDPR) or the California Consumer
Privacy Act (CCPA) mandate the right for the re-
moval of such information from the training data
as per the “Right to be forgotten”.

Unfortunately, these issues are often discovered
only after model training. Although discarding
such sensitive items from the training data sets and
subsequent retraining is possible, it is generally pro-
hibitively expensive. The field of machine unlearn-
ing tackles this exact issue by treating the removal
of information as model fine-tuning. Although sev-
eral state-of-the-art approaches and benchmarks ex-
ist for LLM unlearning (Zhang et al., 2024a; Maini
et al., 2024), the field is still relatively unexplored.

To facilitate further progress in the field, Ra-
makrishna et al. (2025b) developed a comprehen-
sive evaluation challenge for unlearning sensitive
datasets in LLM as a part of the International Work-

shop on Semantic Evaluation.1 This paper presents
our submission to the shared task.

To solve the task, we utilized the state-of-the-art
unlearning method negative preference optimiza-
tion (NPO; Zhang et al., 2024a). We combined this
method with low-rank adaptation (LoRA; Hu et al.,
2021) because we consider the computational effec-
tiveness of unlearning to be of high importance. Al-
though several approaches use parameter-efficient
methods for unlearning in transformers (Gao et al.,
2025; LiM et al., 2024; Ding et al., 2025), the com-
bination of NPO and LoRA is novel.

We show that with LoRA, we can cheaply com-
pute additional regularization terms that use the
original model’s output distribution without any
memory overhead. We further show that includ-
ing the KL divergence minimization regularization
stabilizes the unlearning for a higher number of
epochs. Furthermore, our solution significantly
outperforms the shared task baselines. We release
the source code of our submission on GitHub.2

2 Task Background

The goal of the shared task (Ramakrishna et al.,
2025b) is to build a method for unlearning informa-
tion from a given target large language model. For
a given model, a forget set DFG, and a retain set
DRT, the method should be able to remove the in-
formation present in the forget set from the model
while preserving the data from the retain set and not
deteriorating the model’s performance on unrelated
tasks.

As the target model, the task organizers utilized
OLMo (a pre-trained LLM), specifically its 7B and
1B versions (Groeneveld et al., 2024). Since OLMo
is trained on an open dataset Dolma (Soldaini et al.,
2024), it makes for a good choice for this task.

These target models were further fine-tuned to

1https://llmunlearningsemeval2025.github.io/
2https://github.com/XelfXendr/peft_unlearning
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Figure 1: Overview of our unlearning method. We augment the model with LoRA and train only the LoRA
parameters. For each batch, we compute our training loss shown in Equation 5 in two passes. During the first pass,
we leave the LoRA layers enabled and compute the LRT term of our loss. During the second pass, we compute the
KRT and LNPO terms by disabling the LoRA layers and only utilizing the backbone. This way, we do not need to
maintain a separate copy of the backbone.

remember a dataset consisting of three document
types: long-form synthetic creative documents,
short-form synthetic biographies containing per-
sonally identifiable information such as fake names,
phone numbers, or home addresses, and real doc-
uments sampled from the Dolma dataset. Each
entry in the dataset consists of input-output pairs
that cover either sentence completion or question
answering.

The organizers split this dataset into separate
retain and forget sets, released the training and val-
idation versions of each for the task, and provided
an unlearning evaluation framework LUME (Ra-
makrishna et al., 2025a). The data is in English
only.

3 Method Overview

Our approach for this task combines negative pref-
erence optimization (NPO; Zhang et al., 2024a)
and low-rank adaptation (LoRA; Hu et al., 2021)
for parameter-efficient fine-tuning.

3.1 Negative Preference Optimization
Most currently used unlearning approaches are
based on gradient ascent (GA). Consider a lan-
guage model πθ with parameters θ, which mod-
els the next token y distribution based on context

x. The basic premise is to ascend the classic next-
token prediction cross-entropy loss on the forget
data DFG instead of descending it:

LGA(θ) = EDFG [log πθ(y|x)] (1)

Zhang et al. (2024a) showed that the basic gra-
dient ascent quickly deteriorates the utility of the
model and proposed NPO as an alternative unlearn-
ing strategy. For the original model πref, and a
positive hyper-parameter β, the NPO loss is as fol-
lows:

LNPO(θ;β) =

= EDFG

[
2

β
log

(
1 +

(
πθ(y|x)
πref(y|x)

)β
)]

(2)

The authors further show that ∇θLNPO(θ;β)
converges to ∇θLGA(θ) as β approaches zero. For
positive values of β, the NPO loss effectively damp-
ens the contribution of already unlearned samples.

We further extend LNPO with two regularization
terms. Zhang et al. (2024a) regularize the NPO
loss with a “retain loss” LRT(θ) to improve their
unlearning results.

LRT(θ) = −EDRT [log πθ(y|x)] (3)
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As a complement to the unlearning regulariza-
tion by LRT, we also utilized the Kullback-Leibler
divergence KRT between πθ and πref on the retained
set. This regularization was also used by Maini
et al. (2024).

KRT(θ) = EDRT [KL (πθ(·|x)||πref(·|x))] (4)

The final loss L(θ) we used for the task is as fol-
lows:

L(θ;β, γ, δ) =
= LNPO(θ;β) + γLRT(θ) + δKRT(θ) (5)

A significant issue with this approach is that
LNPO and KRT both require us to maintain the out-
put log-probs of the original πref. In the case of
LNPO, we only need the log-prob of the specific to-
ken in the training set, which we can pre-compute
before unlearning. Unfortunately, we need the en-
tire output token distribution for KRT, which is
unfeasible to precompute and save for each token
in a sufficiently large training set. Therefore, we
must compute it on demand, for which we would
typically need to keep a copy of the original model
in memory.

Our contribution comes from the insight that
with LoRA, we can circumvent the need to keep
a copy of the original model because the origi-
nal model weights are still present within the aug-
mented model. When we need to compute πref(·|x)
for KRT, we ignore the LoRA transformations. We
show the overall workflow of our method in Fig-
ure 1. In addition to that, LoRA substantially re-
duces the memory requirements for fine-tuning us-
ing AdamW (Loshchilov and Hutter, 2019).

3.2 Low-Rank Adaptation

The individual attention layers of OLMo each
contain four linear transformations Wq, Wk, Wv,
Wo ∈ Rd×d. The width and height d of the matri-
ces are 2048 for OLMo-1B and 4096 for OLMo-7B.
The AdamW optimizer stores the gradient moment
estimations of these matrices, which poses a signif-
icant memory cost for model fine-tuning.

The idea of LoRA is to enhance some of the
linear transformations y := Wx within the atten-
tion layers of an LLM with a decomposed low-
rank linear transformation. For matrices A ∈
Rr×d, B ∈ Rd×r the augmented transformation be-
comes y := Wx+ α

rBAx. The value r is the rank

of the transformation, and α is a hyper-parameter
constant in r. The factor α

r is often introduced to
counteract the effect that increasing r has on the
effective learning rate. The original weights W are
then frozen during fine-tuning and only the matri-
ces A,B are updated. This drastically decreases
the number of trained parameters as r can generally
be set to a fairly low value, such as 2 or 5. The
memory requirements of AdamW are thus signifi-
cantly reduced as well.

LoRA has a further benefit over other parameter-
efficient fine-tuning methods, such as adapters
(Houlsby et al., 2019) and Quantized Side Tuning
(Zhang et al., 2024b) in that the we can merge the
low-rank matrices into the original weight matrix
W ′ := W + α

rBA after we finish fine-tuning. This
allows us to update the model without affecting its
architecture.

4 Experiments

For our experiments, we focused on the fine-tuned
OLMo-7B model, which we unlearned using the
training retain and forget sets, all provided by the
task organizers. We chose a fixed value β = 0.5
of the NPO loss hyper-parameter and r = α = 5
for LoRA, as these values gave us reasonably good
results. We experimented with various values for
the hyper-parameters γ and δ. The learning rate
was set to 10−4 with a batch size of 4. We perform
a broader hyper-parameter search on the OLMo-1B
model in Appendix A.

We used four combinations of values for γ, δ. In
three of them, we set δ = 1 and experimented with
values 0, 0.5, and 1 for γ to determine the effect of
KRT on the deterioration of the model. In the last
run, we only kept KRT with δ = 1 and set γ = 0.
We ran five independent runs with unique seeds for
each of the combinations.

Following the shared evaluation scheme, we
measure four scores to evaluate the quality of our
solution. First, we calculate the ROUGE-L score
(Lin, 2004) for each sample in the validation sets.
By computing the score separately for sentence-
completion and question-answering pairs of each
document type in the forget and retain sets, we ob-
tain 12 values. We invert the values for the forget
sets and produce the Task score by merging the 12
resulting values using the harmonic mean.

We perform a loss-based Membership Inference
Attack (MIA; Duan et al., 2024) and scale the re-
sulting MIA score SMIA to penalize both under-
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Run Epoch
Task score ↑ MIA score ↑ MMLU ↑ Final score ↑
µ σ µ σ µ σ µ σ

γ = 1, δ = 0.0
10 .431 .020 .657 .269 .461 .010 .516 .089

20 .449 .029 .389 .117 .449 .008 .429 .043

γ = 1, δ = 0.5
10 .349 .045 .375 .193 .462 .005 .395 .069

20 .434 .021 .594 .201 .439 .017 .489 .074

γ = 1, δ = 1.0
10 .349 .041 .165 .083 .465 .005 .327 .027

20 .453 .016 .620 .219 .449 .016 .507 .072

γ = 0, δ = 1.0
10 .369 .080 .699 .170 .441 .020 .503 .056

20 .332 .085 .400 .113 .370 .054 .367 .021

Baseline NPO – .021 – .080 – .463 – .188 –
Baseline GD – 0 – .382 – .348 – .243 –

Original model 0 0 – 0 – .510 – .170 –

Table 1: Unlearning results on fine-tuned OLMo-7B-0724-Instruct-hf for various hyper-parameters. The first four
entries correspond to our experimental runs with different hyper-parameter choices. Each run was repeated five
times with different seeds. We report the means and standard deviations of the scores after the 10th and 20th epochs,
estimated from those five runs. We compare our results to the baselines reported by task organizers. "GD" stands
for Gradient Difference (Liu et al., 2022).

and over-training: S′
MIA := 1−2 · |SMIA−0.5|. To

measure the degradation of the model after unlearn-
ing, we use the MMLU benchmark (Hendrycks
et al., 2021). Finally, we compute the Final score
as the arithmetic mean of the previous three scores.

5 Results

In Table 1, we report the mean values and standard
deviations of the different scores estimated over
the five unlearning runs. We evaluated the scores
using the provided validation sets. We show the
results after 10 and 20 unlearning epochs. We com-
pare our results with the baselines provided by the
shared task organizers.3 In Figure 2, we show the
development of the different scores throughout the
epochs.

In general, our runs considerably outperform the
provided baseline solutions. The runs that used
LRT overall did not degrade the MMLU score as
much as those where only KRT was involved. In-
cluding KRT with positive δ in the loss slowed the
training. However, since achieving a high MIA
score required hitting a sweet spot between under-
and over-training, including KRT helped stability
in the long run.

We placed lower than expected on the 7B model
in the task leaderboard. This was caused by a logi-
cal error in our submission script, which effectively

3https://llmunlearningsemeval2025.github.io/

caused our solution to perform only three unlearn-
ing epochs instead of 20. We fixed our script for
the 1B model evaluation, on which we ranked as
expected.

6 Conclusion

The combination of NPO and LoRA proved to be
an effective strategy for LLM unlearning. In ad-
dition to significant memory usage improvements,
LoRA allows us to cheaply compute an additional
regularization term, stabilizing the unlearning for a
higher number of epochs. In our future work, we
wish to further investigate the effect of LoRA and
its rank on the resilience of the model to quality
deterioration.
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A Additional experiments

To choose the parameters for our task submission,
we performed two hyper-parameter searches on the
provided OLMo-1B model. For the first search, we
initially set r = α = 5 for the LoRA parameters
and searched for optimal values of parameters γ, δ
from our training loss shown in Equation 5. We
experimented with utilizing only one of the regular-
ization terms by setting one of the γ, δ parameters
to zero, as well as combining the two terms with
various factors. We kept the NPO regularization
parameter constant with the value β = 0.5. We
used the Adam optimizer with a learning rate of
10−4 and a batch size of 4 sequences. The fine-
tuning ran for 20 epochs. We repeated each run
five times with different seeds and averaged the
resulting scores. We show the results in Table 2.

Overall, increasing γ and δ led to an increase
in the task score. However, too high values of γ
or δ led to a drop in the MIA score. On average,
the combination of γ = 1, δ = 0.5 gave us the
best final score. We used this combination for our
task submission and for further experiments on the
OLMo-7B model, which we discussed in Section
4.

With the parameters γ = 1, δ = 0.5, we also
performed a second hyper-parameter search for the
optimal value of the LoRA rank r. For this search,
we kept the value of α = 5 constant, as suggested
by Hu et al. (2021). We kept β, the learning rate,
batch size, and the number of epochs the same as
in the previous search. Once again, we ran five
experiments for each value of r, and averaged the
resulting scores. The results can be seen in Table 3.
In Figure 3, we show the development of the scores
throughout the epochs. Although some of the runs
exhibit better average performance in the various
scores, we find the variance in our results too high
to draw conclusions. Ultimately, we settled with
the rank r = 5 for our submission, as we did not see
any benefits in increasing the number of parameters
with higher ranks.
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Hyper-params Task score ↑ MIA score ↑ MMLU ↑ Final score ↑
γ δ µ σ µ σ µ σ µ σ

0.5 0.0 .387 .033 .322 .047 .258 .008 .323 .022

1.0 0.0 .398 .041 .540 .054 .265 .005 .401 .029

2.0 0.0 .423 .056 .317 .167 .270 .003 .337 .049

0.0 0.5 .269 .086 .285 .033 .256 .006 .270 .035

0.0 1.0 .245 .066 .516 .074 .262 .006 .341 .040

0.0 2.0 .299 .059 .599 .141 .269 .004 .389 .050

0.0 5.0 .362 .065 .039 .049 .267 .007 .222 .021

0.2 0.2 .379 .030 .295 .056 .256 .011 .310 .019

0.5 0.5 .350 .066 .464 .104 .268 .006 .361 .048

0.5 1.0 .442 .030 .719 .056 .261 .009 .474 .025

1.0 0.5 .394 .036 .821 .117 .266 .006 .494 .038

1.0 1.0 .419 .061 .721 .198 .270 .004 .470 .084

1.0 2.0 .400 .081 .606 .202 .265 .003 .424 .071

2.0 1.0 .469 .027 .487 .201 .269 .004 .408 .062

Table 2: Results of a hyper-parameter search for regularization parameters γ and δ conducted on the fine-tuned
OLMo-1B model. Each run was repeated five times with different seeds, and we report the mean and standard
deviation estimates of the scores after the 20th epoch. The scores were evaluated on validation sets provided for the
shared task.

Hyper-params Task score ↑ MIA score ↑ MMLU ↑ Final score ↑
r α µ σ µ σ µ σ µ σ

1 5 .435 .053 .743 .107 .266 .005 .481 .047

2 5 .455 .033 .895 .127 .266 .005 .539 .039

5 5 .417 .059 .765 .097 .272 .005 .485 .041

10 5 .372 .037 .835 .058 .269 .008 .492 .025

25 5 .417 .030 .713 .227 .265 .006 .465 .075

100 5 .432 .042 .658 .282 .271 .006 .454 .096

Table 3: Results of a hyper-parameter search for LoRA ranks r conducted on the fine-tuned OLMo-1B model. The
regularization parameters were set to γ = 1, δ = 0.5. Each run was repeated five times with different seeds and we
report the mean and standard deviation estimates of the scores after the 20th epoch. The scores were evaluated on
validation sets provided for the shared task.

1421



0 2 4 6 8 10 12 14 16 18 20

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

S
co

re

Task score

r=1
r=2
r=5
r=10
r=25
r=100

0 2 4 6 8 10 12 14 16 18 20

Epoch0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

MIA score
r=1
r=2
r=5
r=10
r=25
r=100

0 2 4 6 8 10 12 14 16 18 20

Epoch
0.260

0.265

0.270

0.275

0.280

0.285

S
co

re

MMLU score

r=1
r=2
r=5
r=10
r=25
r=100

0 2 4 6 8 10 12 14 16 18 20

Epoch0.1

0.2

0.3

0.4

0.5

0.6

S
co

re

Final score
r=1
r=2
r=5
r=10
r=25
r=100

Figure 3: Unlearning results on fine-tuned OLMo-1B for various values of LoRA rank r. Measured scores are
averaged over five randomly seeded runs. The standard deviation estimates are shown in error bars. (Points are
offset for better visibility.)
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