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Abstract

This paper presents NarrativeNexus’ partici-
pation in SemEval-2025 Task 10, which fo-
cuses on fine-grained entity framing and narra-
tive extraction. Our approach leverages BART,
a transformer-based encoder-decoder model,
fine-tuned for sequence classification and text
generation. We participated in Subtask 1 (En-
tity Framing) and Subtask 3 (Narrative Extrac-
tion) on the English dataset.

For Subtask 1, we employed a BART-based
classifier to identify and categorize named en-
tities within news articles, mapping them to
predefined roles such as protagonists, antago-
nists, and innocents. For Subtask 3, we used
a generative BART model to produce justifica-
tions for dominant narratives.

Our framework incorporated data augmentation
through paraphrasing, confidence thresholding
for post-processing, and a hallucination filter-
ing module. While the system demonstrated
strong narrative coherence, distinguishing be-
tween similar roles (e.g., protagonist vs. in-
nocent) proved challenging. NarrativeNexus
secured 17th place in Subtask 1 and 5th place
in Subtask 3. We highlight effective modeling
strategies and discuss concrete directions for
future improvements.

1 Introduction

Entity framing and narrative extraction are essen-
tial tasks in natural language processing (NLP),
enabling applications in media bias detection, sen-
timent tracking, and sociopolitical discourse analy-
sis.

SemEval-2025 Task 10 comprises three subtasks,
of which we addressed two: (1) Entity Framing and
(3) Narrative Extraction. Subtask 1 required clas-
sification of named entities into predefined roles,
while Subtask 3 focused on generating textual jus-
tifications for dominant narratives in news articles.

We used BART, a pre-trained transformer model,
fine-tuned separately for sequence classification
and text generation. Despite BART’s strong base-
line capabilities, additional techniques such as
data augmentation, hallucination filtering, and
post-processing were necessary to address domain-
specific challenges.

2 Related Work

We reviewed and analyzed previous research on en-
tity framing and narrative extraction, categorizing
studies based on their methodologies and objec-
tives.

Sinelnik and Hovy (Sinelnik and Hovy, 2024)
explored multilingual disinformation framing us-
ing XLM-RoBERTa, effectively detecting thematic
frames across multiple languages. Their work high-
lights the challenges of multilingual preprocessing
and the importance of aligning embeddings with
linguistic differences.

Xu et al. (Xu et al., 2024) introduced NARCO,
a graph-based Transformer-XL model designed
for narrative coherence. Their approach improved
causal and temporal dependencies in long-form
texts, significantly enhancing narrative consistency
in text generation tasks.

Papalampidi et al. (Papalampidi et al., 2022) pro-
posed a dynamic entity memory mechanism within
a Transformer-XL framework. By tracking entity
attributes throughout a narrative, their model en-
sured coherence and consistency in generated texts,
making it valuable for long-form content genera-
tion.

Schäfer et al. (Schäfer et al., 2024) applied
BERTopic for fake news analysis, demonstrating its
superiority over traditional topic modeling meth-
ods like LDA and NMF. Their study uncovered
nuanced themes within misinformation campaigns,
improving content classification and thematic anal-
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ysis.
Sinelnik and Hovy (Sinelnik and Hovy, 2024)

also examined lexicon-based approaches for frame
detection. While these methods offer interpretabil-
ity and lightweight computation, they struggle to
capture rare or evolving thematic frames, limiting
their effectiveness for complex analyses.

These studies collectively contribute to advanc-
ing NLP methodologies for entity framing, mis-
information analysis, and narrative generation.
Our work builds upon these insights, leveraging
transformer-based models for structured content
analysis in SemEval-2025 Task 10.

3 Background

SemEval-2025 Task 10 consists of three subtasks.
We participated in:

• Entity Framing (Subtask 1): Classify named
entities into protagonist, antagonist, or inno-
cent roles using surrounding context.

• Narrative Extraction (Subtask 3): Generate
justifications for dominant/subnarrative pairs
given full article text.

The English dataset was provided by the task orga-
nizers, along with gold-standard annotations. De-
tailed task descriptions are available in the official
task paper (Piskorski et al., 2025).

4 Dataset and Preprocessing

The English dataset included approximately:

• Subtask 1: 1242 training instances with enti-
ties and context passages (with augmentation).

• Subtask 3: 88 article entries containing
dominant/subnarratives (no augmentation was
done).

For Subtask 1, we used pre-extracted context
passages accompanying each entity in the dataset.
These were paired with the corresponding entity
and formatted as ‘Entity: entity. Context: context’
for BART input.

For Subtask 3, documents were truncated to
1,024 tokens using the Hugging Face tokenizer’s
built-in truncation mechanism, with narrative and
subnarrative prepended to the article.

5 System Overview

5.1 Subtask 1: Entity Framing
We developed a BART-based sequence classifier to
categorize named entities into protagonists, antag-
onists, and innocents. The dataset contained news
articles with named entity mentions, contextual
passages, and gold-standard labels. Each training
instance was formatted as follows:

"Entity: {named entity}. Context:
{text snippet}. Classification:
{label}"

We fine-tuned BART-large using the BART to-
kenizer with a maximum sequence length of 512
tokens. The training hyperparameters, including
batch size, epochs, and learning rate, are presented
in Table 1. During training, we used cross-entropy
loss and the AdamW optimizer with a linear decay
learning rate scheduler.

To enhance generalization, we applied data aug-
mentation techniques, particularly paraphrasing.
We used a mix of GPT-based and Gemini-based
paraphrasing APIs to rewrite approximately 15%
of context passages in the training set. These para-
phrased examples retained the original entity-role
labels and were added back into the dataset, effec-
tively doubling the training size.

Post-processing involved confidence threshold-
ing to improve classification reliability. A softmax
threshold of 0.5 was used for filtering uncertain
predictions. Entities with <50% max confidence
were labeled as "Uncertain" and excluded during
test-time prediction. Error analysis revealed that
distinguishing between protagonists and innocents
was particularly challenging due to contextual am-
biguities in news articles. The model was evaluated
on the basis of Accuracy and F1 score. Table 3
presents the evaluation metrics and the scores.

5.2 Subtask 3: Narrative Extraction
For narrative extraction, we fine-tuned
BART-large-cnn using a text-to-text genera-
tive approach. The dataset contained dominant
narratives, subnarratives, and full article texts,
structured as follows:

"Narrative: {dominant narrative}.
Subnarrative: {subnarrative}.
Article: {full text}"

The model was trained with a batch size of 4 for
eight epochs, optimizing with cross-entropy loss
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and the AdamW optimizer. The hyperparameter
settings for Subtask 3 are detailed in Table 2.

A key challenge was ensuring factual consis-
tency between generated justifications and the orig-
inal article. To mitigate hallucination, we intro-
duced an additional filtering step where justifica-
tions with low confidence scores were discarded.
The evaluation relied on BLEU and ROUGE scores
to measure output fluency and relevance. The
model’s performance results are presented in Ta-
bles 3 and 4.

6 Experimental Setup

6.1 Hyperparameters
The experimental configuration for each subtask is
detailed in Tables 1 and 2.

Table 1: Experimental setup for Subtask 1

Configuration Value

Pre-Trained Model facebook/bart-large
Epochs 5
Batch Size 8
Learning Rate 5e-5
Data Splits 80% Train, 20% Validation

Table 2: Experimental setup for Subtask 3

Configuration Value

Pre-Trained Model BART-large-cnn
Epochs 8
Batch Size 4
Learning Rate 2e-5
Data Splits 80% Train, 20% Validation

7 Results

The performance of our system on the official test
sets is presented in Table 4.

Table 3: Training Performance metrics for Subtask 1
and Subtask 3

Metric Subtask 1 Subtask 3

Accuracy 0.835498 –
F1-score 0.737705 –
BLEU-4 – 0.104933
ROUGE-L – 0.4138472

Table 4: Test Performance metrics for Subtask 1 and
Subtask 3

Metric Subtask 1 Subtask 3

Exact Match Ratio 0.18300 –
Micro Precision 0.20850 –
Micro Recall 0.18490 –
Micro F1-score 0.19600 –
Accuracy 0.71910 –
Precision – 0.71991
Recall – 0.74267
F1 Macro – 0.73085

For Subtask 1, our system achieved an Exact
Match Ratio of 0.18300, with micro precision,
recall, and F1-scores of 0.20850, 0.18490, and
0.19600 respectively. The accuracy for identifying
the main role of entities was 0.71910. These results
indicate the difficulty in capturing fine-grained en-
tity role distinctions, suggesting potential improve-
ments through better feature engineering and model
enhancements.

For Subtask 3, our system ranked 10th, achiev-
ing a Precision of 0.71991, Recall of 0.74267, and
an F1 Macro score of 0.73085. The model demon-
strated strong coherence in narrative justification
generation, though further refinements in dataset
curation and text conditioning techniques could
boost performance further.

These results emphasize the effectiveness of
transformer-based architectures in entity framing
and narrative generation while highlighting ar-
eas where improvements in feature extraction and
model fine-tuning could lead to higher accuracy.

8 Conclusion

We presented NarrativeNexus’ approach to
SemEval-2025 Task 10, focusing on entity framing
and narrative extraction using BART. Our findings
highlight the potential of pre-trained transformer
models for structured content analysis, particularly
in maintaining narrative coherence. However, chal-
lenges such as fine-grained role differentiation and
ensuring factual consistency in justification genera-
tion remain areas for future improvement. We aim
to explore alternative model architectures, data aug-
mentation strategies, and more refined evaluation
techniques in future work to enhance entity framing
and narrative extraction capabilities. The insights
gained from this work contribute to advancing au-
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tomated media analysis and NLP applications in
discourse understanding.
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