AILS-NTUA at SemEval-2025 Task 4: Parameter-Efficient Unlearning for Large Language Models using Data Chunking
Iraklis Premptis, Maria Lymperaiou, George Filandrianos, Orfeas Menis Mastromichalakis, Athanasios Voulodimos, Giorgos Stamou
Abstract
The {textit{Unlearning Sensitive Content from Large Language Models}} task aims to remove targeted datapoints from trained models while minimally affecting their general knowledge. In our work, we leverage parameter-efficient, gradient-based unlearning using low-rank (LoRA) adaptation and layer-focused fine-tuning. To further enhance unlearning effectiveness, we employ data chunking, splitting forget data into disjoint partitions and merging them with cyclically sampled retain samples at a pre-defined ratio. Our task-agnostic method achieves an outstanding forget-retain balance, ranking first on leaderboards and significantly outperforming baselines and competing systems.- Anthology ID:
- 2025.semeval-1.184
- Volume:
- Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
- Month:
- July
- Year:
- 2025
- Address:
- Vienna, Austria
- Editors:
- Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
- Venues:
- SemEval | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1383–1405
- Language:
- URL:
- https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.184/
- DOI:
- Cite (ACL):
- Iraklis Premptis, Maria Lymperaiou, George Filandrianos, Orfeas Menis Mastromichalakis, Athanasios Voulodimos, and Giorgos Stamou. 2025. AILS-NTUA at SemEval-2025 Task 4: Parameter-Efficient Unlearning for Large Language Models using Data Chunking. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1383–1405, Vienna, Austria. Association for Computational Linguistics.
- Cite (Informal):
- AILS-NTUA at SemEval-2025 Task 4: Parameter-Efficient Unlearning for Large Language Models using Data Chunking (Premptis et al., SemEval 2025)
- PDF:
- https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.184.pdf