Word2winners at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval

Amirmohammad Azadi, Sina Zamani, Mohammadmostafa Rostamkhani, Sauleh Eetemadi


Abstract
This paper describes our system for SemEval 2025 Task 7: Previously Fact-Checked Claim Retrieval. The task requires retrieving relevant fact-checks for a given input claim from the extensive, multilingual MultiClaim dataset, which comprises social media posts and fact-checks in several languages. To address this challenge, we first evaluated zero-shot performance using state-of-the-art English and multilingual retrieval models and then fine-tuned the most promising systems, leveraging machine translation to enhance crosslingual retrieval. Our best model achieved an accuracy of 85% on crosslingual data and 92% on monolingual data.
Anthology ID:
2025.semeval-1.182
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1370–1376
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.182/
DOI:
Bibkey:
Cite (ACL):
Amirmohammad Azadi, Sina Zamani, Mohammadmostafa Rostamkhani, and Sauleh Eetemadi. 2025. Word2winners at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1370–1376, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
Word2winners at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval (Azadi et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.182.pdf