Word2winners at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval
Amirmohammad Azadi, Sina Zamani, Mohammadmostafa Rostamkhani, Sauleh Eetemadi
Abstract
This paper describes our system for SemEval 2025 Task 7: Previously Fact-Checked Claim Retrieval. The task requires retrieving relevant fact-checks for a given input claim from the extensive, multilingual MultiClaim dataset, which comprises social media posts and fact-checks in several languages. To address this challenge, we first evaluated zero-shot performance using state-of-the-art English and multilingual retrieval models and then fine-tuned the most promising systems, leveraging machine translation to enhance crosslingual retrieval. Our best model achieved an accuracy of 85% on crosslingual data and 92% on monolingual data.- Anthology ID:
- 2025.semeval-1.182
- Volume:
- Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
- Month:
- July
- Year:
- 2025
- Address:
- Vienna, Austria
- Editors:
- Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
- Venues:
- SemEval | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1370–1376
- Language:
- URL:
- https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.182/
- DOI:
- Cite (ACL):
- Amirmohammad Azadi, Sina Zamani, Mohammadmostafa Rostamkhani, and Sauleh Eetemadi. 2025. Word2winners at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1370–1376, Vienna, Austria. Association for Computational Linguistics.
- Cite (Informal):
- Word2winners at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval (Azadi et al., SemEval 2025)
- PDF:
- https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.182.pdf