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1 Abstract

Food safety incidents cause serious threats to public
health, requiring efficient detection systems. This
study contributes to SemEval 2025 Task 9: Food
Hazard Detection by leveraging insights from exist-
ing literature and using multiple BERT-based mod-
els for multi-label classification of food hazards and
product categories. Using a dataset of food recall
notifications, we applied preprocessing techniques
to prepare data and address challenges like class im-
balance. Experimental results show strong hazard
classification performance on ensembled models
such as DistilBERT, SciBERT, and DeBERTa but
highlight product classification variability. Build-
ing on Tyagi et al. (Tyagi et al., 2023) and Madry
et al.’s (Rebuffi et al., 2021) work, we explored
strategies like ensemble modeling and data aug-
mentation to improve accuracy and explainability,
paving the way for scalable food safety solutions.

2 Introduction

The task at hand which lies in the domain of Food
Hazard Detection(Randl et al., 2025), focuses on
developing explainable machine learning systems
to classify food hazard-related reports. This task
is crucial as food safety incidents pose significant
threats to public health and the global economy,
leading to foodborne illnesses and product recalls.
The challenge involves two key sub-tasks:

• Sub-task 1 (ST1): Classifying food products
and hazards categories from textual data.

• Sub-task 2 (ST2): Detecting precise vector
representations for product and hazard.

These tasks emphasize both accurate prediction
and explainability to enhance trust and usability
in real-world applications. The task overview pa-
per provides detailed insights into the structure

and objectives of this challenge. Our main strat-
egy involves leveraging multiple BERT-based mod-
els for multi-label classification of food hazards
and product categories. We employed an ensem-
ble approach, combining models like DistilBERT,
DeBERTa, and SciBERT to improve predictive per-
formance and robustness. Additionally, we utilized
preprocessing techniques to clean and normalize
the dataset, and applied data augmentation to ad-
dress class imbalance, ensuring a more diverse
and representative training set. By participating
in this task, we discovered that ensemble learning
significantly enhances model performance, achiev-
ing a macro F1 score of 0.7844 on our internal
validation set for Subtask 1 (and 0.4482 on the
official test set). For Subtask 2, the ensembled
approach yielded 0.442 in the conception-phase
internal validation and 0.0315 in the evaluation test
phase. According to the official leaderboard, our
system ranked 26th for Subtask 1 and 24th for
Subtask 2.

3 Background

Recent advancements in NLP have enabled auto-
mated food hazard detection in consumer reviews.
Transformer-based models like BERT classify re-
views as "safe," "potentially unsafe," or "unsafe,"
addressing challenges such as class imbalance and
limited data. Maharana et al. fine-tuned BERT on
expert-validated e-commerce data, achieving a pre-
cision of 0.77, recall of 0.71, and F1-score of 0.74
(Maharana et al., 2019). However, small dataset
size and linguistic variability hindered generaliza-
tion.

In foodborne illness detection, encoder-based
transformers (RoBERTa, XLM-RoBERTa) and tra-
ditional models (SVM, logistic regression) were
compared for classifying 7,546 food recall an-
nouncements. A novel GPT-CICLe approach com-
bined Conformal Prediction with GPT-3.5-turbo
for few-shot learning, reducing large language
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model usage by 60–98% while maintaining accu-
racy (Randl et al., 2024). TF-IDF-SVM achieved
the highest macro F1 scores (0.58 for hazard-
category, 0.59 for product-category), outperform-
ing RoBERTa in low-resource settings.

For automating food safety news impact classi-
fication, a stacking ensemble integrated classifiers
like Naive Bayes, SVM, XGBoost, CNN, LSTM,
and BERT. Combining TF-IDF and Word2Vec em-
beddings enhanced text representation, achieving
an F1-score of 0.8052 (Song et al., 2020). De-
spite its success, computational complexity and
dataset constraints limited real-time applications,
prompting future efforts to optimize configurations
and explore multilingual datasets. In relation to
prior work, our method extends Maharana et al.’s
fine-tuning of BERT on e-commerce data (Maha-
rana et al., 2019) by tackling multi-label classifica-
tion of both hazards and products simultaneously,
rather than single-label safety judgments. Unlike
Randl et al.’s GPT-CICLe few-shot prompts (Randl
et al., 2024), we employ deterministic local aug-
mentation for reproducibility and scale. Compared
to Song et al.’s stacking of heterogeneous classi-
fiers (Song et al., 2020), we focus exclusively on
transformer ensembles to leverage deep contex-
tual embeddings across domain-specific and gen-
eral models.

4 Data

The dataset used for evaluation consists of food
hazard recall notifications collected from various
sources, focusing on food safety. It contains a total
of 5,966 rows and 10 columns out of which the 6
required columns for our task are shown in Table 1.
The dataset was preprocessed to ensure uniformity
and relevance for model training. Numerical identi-
fiers, phone numbers, addresses, dates, and unnec-
essary fields (e.g., Domestic Est. Number, Recall
Class) were removed using regex patterns to pre-
vent bias and maintain privacy. Special characters
and excessive spaces were eliminated for consis-
tent formatting, and all text was normalized to a
uniform format. These steps optimized the dataset
for improved machine learning model performance
in classification tasks.

5 Experimental Setup

5.1 BERT Baseline
BERT is based on the Transformer architecture in-
troduced in the paper ”Attention is All You Need”

Table 1: Overview of the dataset fields

Field Name Description
title A brief title of the recall no-

tification.
text Detailed information about

the recall.
hazard-category The category of the hazard

(e.g., biological, allergens).
product-category The category of the product

affected (e.g., meat, dairy).
hazard The specific hazard identi-

fied (e.g., listeria monocyto-
genes).

product The specific product in-
volved in the recall.

(Vaswani et al., 2017). BERT was chosen due
to its strong contextual understanding and pre-
trained knowledge, making it highly effective for
text classification tasks with limited training data.
Pre-trained models like BERT allow efficient fine-
tuning, improving generalization without requiring
large datasets.

Table 2: Training Parameters for BERT Baseline Model

Parameters Values
Epochs 3
Batch Size 8
Logging Steps 10
Warmup Steps 500
Weight Decay 0.01

To optimize performance while maintaining ef-
ficiency, specific hyperparameters were selected
in Table 2. A batch size of 8 was used to balance
memory constraints and training stability. Weight
decay (0.01) helped prevent overfitting by penal-
izing large weights. Three training epochs were
chosen as BERT fine-tunes effectively with mini-
mal epochs, ensuring stable training, and allowing
frequent weight updates without excessive compu-
tational costs.

5.2 Ensemble Methods
To improve the efficiency of our tasks, ensembling
approach was used that combined multiple indi-
vidual models to improve overall predictive perfor-
mance and robustness. The models chosen were:

1. DistilBERT: Faster and smaller than standard
BERT model so it is efficient in NLP tasks.
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2. DeBERTa: Good for High-accuracy NLP
tasks.

3. SciBERT: Scientific domain specific so good
in hazards detection for our task.

Model Selection Rationale We chose SciBERT
for its pre-training on scientific text, which closely
matches the technical language of food recall re-
ports; DeBERTa for its disentangled attention
mechanism that yields richer contextual representa-
tions; and DistilBERT to balance throughput and
accuracy in inference.

The reason for not choosing only the BERT-
Large-uncased model directly was that large mod-
els are well suited for tasks with a significantly
larger dataset and more resource-consuming hy-
perparameters. Based on the findings by Tyagi et
al. (Tyagi et al., 2023) ensembled models perform
better than large models, as proven by our results.
The reason for this is that ensembling combines the
predictions of multiple models to produce a more
robust and accurate outcome than any individual
model, leveraging the strengths and compensating
for the weaknesses of different models.

Table 3: Hyperparameter Settings for Ensemble Tech-
nique

Hyperparameter DeBERTa SciBERT DistilBERT
Train Epochs 8 8 8
Batch Size 8 16 16
Logging Steps 10 10 10
Warmup Steps 500 500 500
Weight Decay 0.01 0.01 0.01
Parameters 150 M 110 M 67 M

The hyperparameters as shown in Table 3 were
chosen to balance training stability and resource
constraints. A train and evaluation batch size of
8 was used for DeBERTa due to limited computa-
tional resources, while SciBERT and DistilBERT
used a batch size of 16 to maximize GPU utiliza-
tion and training efficiency. The number of training
epochs was set to 8 to allow sufficient fine-tuning
without risking overfitting. The weight decay value
of 0.01 was applied uniformly to regularize the
models and prevent overfitting.

Table 4: Model Parameter Comparison

Model Parameters (Million)
Ensembled Models 327
BERT Large Uncased 336

Table 4 shows that despite BERT having more
parameters than the ensemble models combined pa-
rameters, the latter performs better. This is because
BERT is well suited for tasks with significantly
larger datasets, hence ensembling was the suitable
approach to our task given our dataset size.

5.3 Data Augmentation

We initially utilized external APIs with structured
prompts to generate class-specific, contextually rel-
evant text to address class imbalance and limited
sample diversity. While effective for targeted aug-
mentation, this approach was constrained by API
rate limits, key exhaustion, and inconsistent latency.
To overcome these limitations, we implemented
a deterministic local augmentation pipeline using
nlpaug and BERT-based contextual embeddings.

This method employed substitution-based aug-
mentation (top_k = 50) using “ContextualWordEm-
bsAug” with the “bert-base-uncased” model. Se-
mantic similarity was validated through spaCy’s
“en_core_web_md” model, using an initial accep-
tance threshold of 0.85, adaptively reduced to a
minimum of 0.70 when necessary. Each sample un-
derwent up to 200 augmentation attempts, generat-
ing a maximum of 10 high-similarity, semantically
coherent variants.

Each class—Hazard and Product—was aug-
mented independently to preserve class-specific
semantics and avoid drift. Augmentation was con-
fined within individual class groups to maintain
label integrity. Overrepresented classes were ran-
domly undersampled using a fixed seed to meet a
target count, while underrepresented classes were
synthetically expanded. This explains the reduc-
tion in dominant class frequencies, as illustrated in
Fig. 1 (Hazard) and Fig. 2 (Product), which show
class distributions before and after augmentation.

Two augmentation passes were applied per
class, and metadata fields (augmentation_pass,
try_number, is_augmented) were retained for trace-
ability. This method, implemented using nlpaug,
yielded a measurable macro F1 score increase from
0.10 (baseline) to 0.32 after augmentation, reflect-
ing a consistent improvement across all classes.
The method is scalable, reproducible, and indepen-
dent of external services, offering a robust solution
for large-scale augmentation. Additional results
are discussed in the later sections.
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(a) Before Augmentation for Hazard Class (Top 100 La-
bels)

(b) After Augmentation for Hazard Class (Top 100 Labels)

Figure 1: Comparison of Hazard Class Distribution
Before and After Augmentation

(a) Before Augmentation for Product Class (Top 200 La-
bels)

(b) After Augmentation for Product Class (Top 200 La-
bels)

Figure 2: Comparison of Product Class Distribution
Before and After Augmentation

6 Results and Discussion

6.1 Subtask 1: Hazard and Product Category
Identification

Initially, we fine-tuned the BERT-base-uncased
model to establish a baseline for performanFce.
During training, we recorded key metrics such
as training loss, validation loss, accuracy, and F1

score for each epoch, using an 80-20 training-
validation split. The macro F1 score, reported in
Table 5, represents the result on the test dataset,
as obtained by submitting the model predictions
to CodaBench. This baseline model achieved a
macro F1 score of 0.41.

Subsequently, we adopted an ensemble learning
approach, combining multiple models to improve
performance. The models included in the ensem-
ble were DistilBERT-base-uncased, DeBERTa-
base-uncased, and SciBERT-base, the latter being
fine-tuned specifically on scientific data. By aver-
aging the logits from these models to generate final
predictions, we significantly improved the macro
F1 score, achieving 0.78.

This improvement aligns with the findings of
Tyagi et al. (Tyagi et al., 2023), which suggest that
ensemble approaches, leveraging multiple foun-
dational models, can outperform larger individual
models, despite the latter having more parameters.
To validate this hypothesis, we trained the BERT-
large-uncased model on the same dataset; how-
ever, it achieved only a macro F1 score of 0.52,
demonstrating that the ensemble method outper-
forms larger single-model configurations.

Additionally, we implemented a Conformal In-
Context Learning (CICLe) approach, as proposed
by Randl et al. (Randl et al., 2024), which utilizes
logistic regression as a base classifier and prompts
Llama-3.1 B for hazard and product category clas-
sification. This approach resulted in a macro F1
score of 0.51, further contributing to the evaluation
of different strategies for model improvement.

Table 5: Performance of various fine-tuned models em-
ployed for identifying Hazard and Product categories
for conception phase ST 1.

Model(s) Accuracy Loss Macro F1 Score
BERT-base-
uncased
(baseline)

0.56 9.27 0.41

Ensembled
(Distil-
BERT,
DeBERTa,
SciBERT)

0.39 1.45 0.78

BERT-
large-
uncased

0.43 5.67 0.52

Conformal
In-Context
Learning
(CICL)

- - 0.51
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Figure 3: Visual representation of F1 scores across mod-
els. The ensembled models show better scores in Macro
F1 score as indicated in Table 5.

6.2 Subtask 2: Hazard and Product
Identification

For Subtask 2, we directly employed an ensemble
of models, including DistilBERT-base-uncased,
DeBERTa-base-uncased, and SciBERT-base. De-
spite the improved model architecture, the extreme
class imbalance in this subtask resulted in poor
performance, with the models struggling to effec-
tively capture the underlying patterns. Fine-tuning
the ensemble on the imbalanced dataset led to a
slight improvement, achieving a macro F1 score of
0.12 as indicated in Table 6, which, though better,
was still suboptimal for a classification task of this
nature.

Table 6: Performance of various fine-tuned models/tech-
niques employed for identifying Hazards and Products
for Conception Phase ST2.

Model(s) Accuracy Loss Macro F1 Score
BERT-base-
uncased
(baseline)

0.32 9.6 0.08

Ensembled
(Distil-
BERT,
DeBERTa,
SciBERT)

0.53 5.54 0.12

Augmented
Ensembled

0.68 4.32 0.32

6.3 Quantitative Findings and Analysis

The ensembled models achieved the highest macro
F1 score of 0.4482 for Subtask 1 and 0.0315 for
Subtask 2 in the evaluation phase. This signifi-
cantly outperformed the baseline models, demon-
strating the effectiveness of model ensembling in
handling complex classification tasks.

Ablation studies further confirmed that the en-
semble approach consistently outperformed indi-
vidual models, highlighting the benefits of com-
bining multiple architectures. Additionally, data
augmentation played a crucial role in addressing
class imbalance, leading to improved model perfor-
mance.

Phase Sub-task 1
Score

Sub-task 2
Score

Conception
Phase ST1

0.784 0.000

Conception
Phase ST2

0.000 0.442

Evaluation
Phase

0.4482 0.0315

Table 7: Scores for Conception and Evaluation Phases

The Conception Phase ST2 score of 0.442 refers
to performance on our held-out 20% validation
split prior to evaluation-phase tuning. The official
evaluation macro F1 (0.0315) was obtained by sub-
mitting to the SemEval CodaLab test set, with la-
bels withheld to simulate unseen conditions, which
equally weights performance across all label cate-
gories irrespective of class distribution. In Task 9,
this includes both hazard type and product category
labels, requiring robust handling of multi-label im-
balance and partial annotations as described in the
task formulation (Randl et al., 2025).

7 Conclusion and Future Work

In this paper, we presented our participation in Se-
mEval 2025 Task 9: Food Hazard Detection,
where we applied advanced BERT-based models
to tackle the multi-label classification problem of
food hazards and product categories. Although
built on established components, our integration
of controlled data augmentation with ensemble di-
versity contributes a reproducible and competitive
baseline for food hazard detection under imbal-
anced conditions. Through extensive experimen-
tation with models such as DistilBERT, SciBERT,
and DeBERTa, we achieved strong performance
in hazard classification. Our ensemble approach
demonstrated promising results, though product
classification still exhibited variability, highlight-
ing areas for further improvement. Currently, we
are ranked 26 and 24 internationally based on our
scores in Subtasks 1 and 2 in the Submitted leader-
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board.
In the future, the emphasis will be placed on opti-

mizing data augmentations toward mitigating class
imbalance issues and building model robustness.
Here, extending augmentations over a longer win-
dow will diversify and make training data much
more representative when considering minority
classes. This could include enhancing the diversity
of the data with further techniques like domain-
specific paraphrasing or leveraging generative ap-
proach models for GPT-based synthetic data. Hy-
perparameters such as learning rate, batch size, and
weight decay will also be tuned toward maximiz-
ing the model’s stability and efficiency. Finally, a
study will be performed to discover methods for
easing resource consumption while maintaining
the performance of the previously underlined con-
cepts to allow for a better level of generalization
and scalability in handling a more complex food
hazard detection task. The future work will fur-
ther focus on incorporating multilingual datasets to
enhance generalizability, integrating explainability
modules such as SHAP or LIME for model trans-
parency, and exploring active learning strategies to
iteratively refine the model with user feedback in
real-world deployment settings.

8 Limitation

The ensemble approach, combining DistilBERT,
DeBERTa, and SciBERT, demonstrated a good
performance in hazard classification but faced no-
table limitations. Despite data augmentation ef-
forts that improved class distributions and boosted
overall scores, the models struggled with product
classification due to the inherent complexity of
diverse product categories and extreme class im-
balance. Even after augmentation, synthetic data
failed to capture nuanced domain-specific patterns
fully. The ensemble’s computational complexity
also limited real-time deployment, while hyper-
parameter tuning introduced trade-offs between
resource efficiency and training stability. These
limitations highlight the need for more advanced
augmentation techniques, cost-sensitive learning,
or hierarchical classification strategies to address
underrepresented classes and improve scalability.

9 Code and Reproducibility

To encourage reproducibility and facilitate future
work on food hazard detection, we have made our

source code, preprocessing scripts, and configura-
tion files publicly available at:

https://github.com/HammadxSaj/
Sem-Eval-Task09-Dataset

This repository includes the implementation for
all models described in this paper, including BERT
fine-tuning, ensemble logic, and data augmentation
routines.
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