
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1342–1350
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

QleverAnswering-PUCRS at SemEval-2025 Task 8: Exploring LLM agents,
code generation and correction for Table Question Answering

André Bergmann Lisboa, Lucas Cardoso Azevedo, and Lucas R. C. Pessutto
School of Technology – PUCRS – Porto Alegre – Brazil

andre.bergmann@edu.pucrs.br, lucas.azevedo96@edu.pucrs.br,
lucas.pessutto@pucrs.br

Abstract

Table Question Answering (TQA) is a chal-
lenging task that requires reasoning over
structured data to extract accurate answers.
This paper presents QleverAnswering-PUCRS,
our submission to SemEval-2025 Task 8:
DataBench, Question-Answering over Tabular
Data. QleverAnswering-PUCRS is a modu-
lar multi-agent system that employs a struc-
tured approach to TQA. The approach revolves
around breaking down the task into specialized
agents, each dedicated to handling a specific as-
pect of the problem. Our system was evaluated
on benchmark datasets and achieved compet-
itive results, ranking mid-to-top positions in
the SemEval-2025 competition. Despite these
promising results, we identify areas for im-
provement, particularly in handling complex
queries and nested data structures.

1 Introduction

The rapid growth of structured data across various
domains has increased the demand for automated
systems capable of extracting and interpreting infor-
mation from tabular data. TQA is a crucial Natural
Language Processing (NLP) task that focuses on
generating accurate answers to factual questions
using structured information (Jin et al., 2022). Un-
like traditional QA systems that rely on free-text
corpora, TQA systems must directly retrieve rel-
evant information from relational tables, spread-
sheets, or structured databases. Additionally, the
limited context window of Large Language Mod-
els (LLMs) constrains the amount of tabular data
that can be processed in a single prompt, making
metadata extraction a key component for precise
query resolution.

Task 8 in SemEval 2025 – DataBench, Question-
Answering over Tabular Data (Osés Grijalba et al.,
2025), introduces a new benchmark for evaluating
TQA systems. This benchmark enables the assess-
ment of different question types spanning multiple

information domains. The challenge lies in devel-
oping systems that can accurately answer queries
over standardized datasets, where responses may
take various forms, including boolean, categorical,
numerical, or lists. Evaluation is based on the sys-
tem’s ability to provide precise answers given a
(dataset, question) pair.

In this paper, we introduce QleverAnswering-
PUCRS1, a modular approach to Table Question
Answering. Our system decomposes the TQA
task into specialized agents, each responsible for
a distinct function: metadata extraction, expres-
sion generation, error handling, and code execution.
By structuring the workflow into interconnected
components, QleverAnswering-PUCRS aims to im-
prove observability, reduce execution failures, and
enhance accuracy.

We evaluate QleverAnswering-PUCRS on
benchmark datasets, demonstrating its effective-
ness in handling complex queries over structured
data. Our average results ranked us between 9th and
19th out of 49 participating systems across the four
different rankings considered in the task. Nonethe-
less, we identify areas for further improvement and
refinement in our approach.

2 Background and Related Work

TQA aims to answer questions referring to data
stored in tables (Jin et al., 2022). Early methods
had trouble generalizing across many data formats
and depended on semantic parsing to translate natu-
ral language queries into structured languages like
SQL. Modern approaches process tabular data us-
ing LLMs, avoiding the need for explicit query
translation. Proprietary models tend to perform
better, but all models have limits when performing
sophisticated queries (Osés Grijalba et al., 2024).

1Our code is available at https://github.
com/LucasAzeved/SemEval_2025_Task_8_
QleverAnsweringPUCRS.

1342

https://github.com/LucasAzeved/SemEval_2025_Task_8_QleverAnsweringPUCRS
https://github.com/LucasAzeved/SemEval_2025_Task_8_QleverAnsweringPUCRS
https://github.com/LucasAzeved/SemEval_2025_Task_8_QleverAnsweringPUCRS

Current research has investigated retrieval-
augmented generation (RAG), structured query
generation, and simple neural network-based tech-
niques to enhance query resolution. These ap-
proaches enable models to overcome context win-
dow restrictions by extracting pertinent meta-
data before query execution (Zhou et al., 2025).
Program-based prompting is a further method in
which models produce executable code to interpret
tabular data rather than immediately responding to
queries. This method is used for hybrid question
answering by the HPROPRO framework (Shi et al.,
2024), which shows good performance without the
need for explicit data retrieval or transformation.

The MACT framework (Zhou et al., 2025) in-
troduces a multi-agent approach, where distinct
agents handle planning, query formulation, exe-
cution, and validation. This division of tasks en-
hances robustness, allowing for iterative refinement
and error handling, leading to performance gains
over fine-tuned LLMs in complex table-based rea-
soning tasks. Error correction mechanisms improve
accuracy by identifying logical inconsistencies and
refining queries dynamically (Shi et al., 2024).

Program-Aided Language Models (PAL) (Gao
et al., 2023) propose generating intermediate
Python code to be executed by an interpreter, which
improves arithmetic and symbolic reasoning. This
delegation enhances accuracy, especially for prob-
lems requiring precise calculation or logic that ex-
ceeds LLMs’ intrinsic capabilities.

The Plan-of-SQLs (POS) framework (Nguyen
et al., 2025) emphasizes the need for interpretabil-
ity in Table QA. By decomposing complex queries
into atomic SQL operations, POS enables transpar-
ent, step-by-step reasoning that can be verified by
humans and LLMs alike. This work is particularly
relevant in high-stakes domains, demonstrating that
explainability can coexist with competitive perfor-
mance.

While PAL and POS focus on symbolic ex-
ecution and explainability, our approach targets
the integration of structured program reasoning
with lightweight retrieval to improve efficiency and
adaptability in practical settings.

3 QleverAnswering-PUCRS

3.1 Task Description

The Question Answering over Tabular Data task
generates accurate and contextually relevant re-
sponses to factoid questions based on structured

Figure 1: Overview of QleverAnswering-PUCRS

data stored in tabular formats. Given a pair (d, q),
where d is a dataset, and q is a question, we aim
to produce an answer a corresponding to the re-
sponse of q over d. The system needs to extract,
interpret, and synthesize information directly from
tables/datasets.

3.2 Solution Overview

QleverAnswering-PUCRS employs a modular
agentic approach, where specialized agents han-
dle specific subtasks such as metadata extraction,
query interpretation, code generation, and valida-
tion. This pipeline aims to improve accuracy, facili-
tate debugging, and ensure adaptability to complex
queries. The system enhances robustness by struc-
turing the workflow into independent yet intercon-
nected agents, allowing for targeted optimizations
at each stage. An overview of QleverAnswering-
PUCRS can be seen in Figure 1.

3.2.1 Metadata Extraction Agent

Extracting relevant information from large struc-
tured datasets is non-trivial, as that they may con-
tain many columns. This fact, added to the limited
context window of LLMs, makes it impractical to
input an entire dataset in a prompt. Besides, we
want to provide a concise prompt that only contains
the information related to the question.

1343

The first step of our approach is an metadata ex-
traction agent, which pre-processes and structures
metadata to guide later steps by filtering, cleaning,
and organizing raw data into a prompt. We design
the prompt presented in Appendix A.1.

The three components that are inserted into this
prompt are (i) the dataframe preview, replacing
the field {df_str} in the prompt, providing a snap-
shot of the dataset that captures a limited set of
initial rows. This preview aims to allow the LLM
to infer potential value distributions, column re-
lationships, and general patterns in the data, en-
suring that subsequent steps leverage meaning-
ful insights; (ii) the columns information, on the
field {columns_info_str}, containing structural
details about the dataset, which includes the col-
umn names and data types. By incorporating this
information, the LLM should be able to determine
if the dataset contains categorical or numerical at-
tributes, recognize potential restrictions, and vali-
date whether a query can be executed without en-
countering errors due to type mismatches; the final
and most critical input is (iii) the user query, in
the field {query}, which represents the natural lan-
guage question that the system must interpret and
translate into a structured response. It is crucial that
the query’s intent can be readily determined and
ambiguity avoided; otherwise, all future generated
information can be misleading.

The output of this step consists of four compo-
nents. The first is a list of relevant columns required
to answer the query, and the second is the data
type of each relevant column (e.g., integer, string,
boolean). The third component is the expected
response type for that question, which is one of
the following set {boolean, number, category,
list[category], list[number]}, and the last
one is a sample answer, which is a plausible re-
sponse generated based on the query and dataset
preview.

3.2.2 Expression Generation Agent
Once relevant metadata has been identified on the
input dataset, the next step is to convert the query
into a valid expression that can extract the answer to
the question over the provided dataframe. This step
of the pipeline receives as input the newly refined
information from the metadata extraction agent.
Based on this data, the agent translates the natural
language query into a single-line executable ex-
pression. This stage takes the refined data from the
metadata extraction agent and converts the natural

language query into a single-line expression, which
disallows loops, variable assignments, or multi-line
code. We designed the prompt in Appendix A.2 to
achieve this goal.

The prompt template for this agent receives
as input (i) the dataframe preview, in the field
{df_str}, which consists of a small preview of the
dataset, (ii) the structured set of metadata inferred
from the metadata extraction agent, represented
as {generated_information}, crucial for guid-
ing the generation of the correct expression. This
field is responsible for encapsulating key aspects
such as the relevant columns, their data types, and
the expected response format, ensuring that the
generated expression aligns with the given query;
(iii) the query itself, in the field {query}, which is
provided to define the specific operation that must
be translated into a valid executable expression.

Given that an incorrect expression may lead
to execution failures, this step is critical to the
pipeline’s success, and its output is directly con-
nected with the execution engine module, which
acts as the pipeline’s execution layer. This module
receives a valid expression, executes it over the
dataset in a code interpreter, and returns the result,
which is the answer to a factoid question.

3.2.3 Error Fixing Agent
Despite careful query construction, execution er-
rors may still arise due to column mismatches, such
as referencing a non-existent column or data type
conflicts, where numerical operations are applied to
categorical data. Logical inconsistencies can also
occur if incorrect assumptions are made during
metadata extraction, leading to unexpected failures
when executing expressions.

To address these issues, the error fixing agent
automatically detects execution failures and re-
attempts expression generation with an improved
context. Our approach detects errors as they oc-
cur. The failing expression and error message are
captured in those cases to enhance the correction
prompt. Using this updated context, a corrected
expression is generated and re-executed by the exe-
cution engine module.

We designed the prompt in Appendix A.3 to
achieve this goal. The inserted information also
includes (i) a preview of the DataFrame, replac-
ing the field {df_str} in the prompt, which
provides a small snapshot of the dataset to of-
fer context for the correction process; (ii) the
previously generated expression, in the field

1344

{previous_expression}, which serves as a ref-
erence for the attempted solution that encountered
an error; (iii) the corresponding error message,
represented as {error_encountered}, providing
crucial insights into the nature of the failure, facil-
itating the identification of necessary corrections;
and (iv) the query, in the field {query}, which de-
fines the intended operation that must be correctly
translated into an executable expression.

This iterative approach strengthens system relia-
bility by reducing manual work and ensuring that
erroneous queries can be resolved dynamically.

4 Experimental Setup

4.1 Dataset Description

We worked with two datasets: one during the de-
velopment phase and another during the compe-
tition phase. For development, we used the 65
datasets from DataBench2 (Osés Grijalba et al.,
2024), a benchmark designed to provide a realistic
and diverse testing ground for question-answering
models over tabular data. DataBench consists of
structured CSV-style files with varying numbers of
rows and columns, representing real-world datasets
across multiple domains.

During the competition phase, we used the 15
datasets provided by the task organizers for system
evaluation. These datasets cover a diverse range
of domains and vary in the number of rows and
columns, allowing the models to be tested in an
unseen environment with a wide range of structural
complexities. Table 1 presents some statistics of
these datasets, including the number of questions,
columns, and rows of each test dataset. A Lite ver-
sion of the datasets, containing the same questions
and columns but limited to the first 20 rows of each
dataset, was provided by the task organizers.

4.2 Agents Description

Metadata Extraction LLM: We used Meta Llama
3 8B (Dubey et al., 2024) to extract key metadata
from the dataset and the question. The model pro-
cesses a structured prompt with a data set preview
and a query. We first format the dataset to construct
this prompt, ensuring that the column names are
cleaned and represent the actual data. Given token
limitations, only a subset of rows is included, fo-
cusing on covering different value types within the
dataset.

2https://huggingface.co/datasets/cardiffnlp/
databench

Dataset #Ques #Cols #Rows

066_IBM_HR 39 35 1,470
067_TripAdvisor 29 10 20,000
068_WorldBank_Awards 34 20 239,461
069_Taxonomy 35 8 703
070_OpenFoodFacts 29 11 9,483
071_COL 36 8 121
072_Admissions 39 9 500
073_Med_Cost 32 7 1,338
074_Lift 35 5 3,000
075_Mortality 29 7 400
076_NBA 36 30 8,835
077_Gestational 31 7 1,012
078_Fires 39 15 517
079_Coffee 38 15 149,116
080_Books 41 13 40

Table 1: Statistics of Competition Datasets

Once the formatted prompt is sent to the model,
it identifies the relevant columns required to an-
swer the query and determines their data types.
The model then classifies the expected response
type, selecting from predefined categories to ensure
consistency in subsequent processing steps. Addi-
tionally, it generates a sample answer based on the
provided dataset fragment, serving as a reference.
All LLM calls share the same request parameters:
temperature = 0.0; max_tokens = 256. A low
temperature tends to produce more deterministic
responses. Due to API token constraints, where
input tokens consume most of the available quota,
we set max_tokens to avoid exceeding this limit.

Expression Generation LLM: For expression
generation, we used Qwen2.5 Coder 32B In-
struct (Hui et al., 2024). The model receives a
prompt containing the dataset preview, user query,
and the metadata extracted from the previous step.
The prompt is designed to include all needed con-
text while staying concise to fit token limits. The
model is then instructed to generate a single-line
Pandas3 expression that directly answers the query
without defining additional variables or perform-
ing unnecessary operations. Multi-line code, loops,
and function definitions are explicitly disallowed to
maintain compatibility with our execution frame-
work. If the generated expression does not conform
to the expected format or contains syntax errors, it
is flagged for correction in the error-handling stage.

3https://pandas.pydata.org/

1345

https://huggingface.co/datasets/cardiffnlp/databench
https://huggingface.co/datasets/cardiffnlp/databench
https://pandas.pydata.org/

System Databench Databench
Lite

QleverAnswering-PUCRS 76.82
(81.03)

79.50
(80.27)

Ranking General 19/49 15/49
Ranking Open 13/35 9/35

Baseline 26.00 27.00

Ranking General 45/49 44/49
Ranking Open 31/35 31/35

Table 2: Comparison between our system’s performance
and the task baseline. Bold values indicate the accuracy
(%) scores, with the official scores on DataBench after
human review shown in parentheses.

Error Fixing LLM: We also utilized the
Qwen2.5 Coder 32B Instruct (Hui et al., 2024) for
error correction. The dataset preview, the previ-
ously created expression, the discovered error mes-
sage, and the original query are all included in the
structured prompt sent to the model. This prompt is
thoughtfully structured to give all the required de-
bugging context while being brief enough to adhere
to token restrictions. The model is specifically told
to examine the error, determine its possible causes,
and provide a corrected one-line Pandas expression
that fixes the problem. The system analyzes the
model’s response and runs the corrected expression
generated against the dataframe. Regardless of the
outcome, the execution response is saved as the
final solution.

Execution Engine Module: To execute
the generated expression, we utilized the
PandasInstructionParser from LlamaIndex4,
which acts as an execution engine for Pandas-based
operations over tabular data. The execution is
orchestrated within a controlled pipeline using
the QueryPipeline (QP) module, ensuring
structured processing and response parsing. The
pipeline consists of an input component that
receives the expression and forwards it to the
PandasInstructionParser, which interprets and
executes the operation over the dataset in a Python
3.10 environment.

5 Results

Table 2 presents the official results of our system.
In the open-source model ranking, our scores were
76.82 on Databench and 79.50 on Databench Lite,
positioning us 13th and 9th, respectively, of 35 par-

4https://docs.llamaindex.ai/en/stable/

Without Error Fixing

Acc Q+ Q− # Errors

DataBench 75,86 396 126 30
DataBench Lite 78,73 411 111 27

With Error Fixing

Acc Q+ Q− # Errors

DataBench 76,82 401 121 25
DataBench Lite 79,50 415 107 23

Table 3: Evaluation results for the DataBench and
DataBench Lite on both setups, reporting % accuracy
scores (Acc), correct predictions (Q+), incorrect predic-
tions (Q−), and total number of errors.

Figure 2: Accuracy heatmap on DataBench Dataset

ticipants. In the general ranking, our scores re-
mained the same, but we ranked 19th and 15th out of
49 participants. These results show strong mid-to-
top performance, with our system achieving scores
nearly three times higher than the task baseline.

Table 3 presents an ablation study evaluating
the impact of the error fixing agent on the perfor-
mance of the system. The results show an accuracy
improvement of 0.96% for DataBench and 0.77%
for DataBench Lite when the error fixing mecha-
nism is applied. This is an improvement of 16.67%
and 14.81% on the number of errors resolved in
DataBench and DatabenchLite, respectively.

Figures 2 and 3 present the accuracy scores per
semantic category (data type) and dataset. One
notable observation is the consistency of our re-
sults across Databench and Databench Lite, sug-
gesting that our model generalizes well even when
restricted to only 20 rows per dataset.

Regarding different semantic types, our system

1346

https://docs.llamaindex.ai/en/stable/

Figure 3: Accuracy heatmap on DataBench Lite Dataset

achieved its highest accuracy in the boolean type,
which aligns with the expectation that the restricted
domain in boolean values is easier to infer. In
contrast, the lowest accuracy was observed in the
list[category] type, which requires handling
multiple categorical elements in a single response.
The difficulty in correctly parsing and structuring
multiple values is likely a contributing factor to this
result, highlighting an area where additional refine-
ment in the expression generation process might be
beneficial.

One of the most significant drops in accu-
racy occurred in the 067_TripAdvisor dataset,
where our system obtained the lowest performance
among all datasets. A deeper inspection reveals
that this dataset contains JSON-formatted strings
within queried columns, introducing additional
complexity in extracting relevant values. Since
our system relies on Pandas expressions to di-
rectly parse and filter data, handling embedded
JSON structures within textual fields requires ad-
ditional pre-processing, which was not included
in our current pipeline. Similarly, the dataset
070_OpenFoodFacts exhibited similar problems,
but in this case, due to list-formatted strings rather
than JSON, requiring specific parsing strategies
that were not accounted for. This issue impacted
both list[category] and category type ques-
tions, where correct identification and parsing of
values were hindered, as well as number type ques-
tions, particularly those involving "How many..."
questions, where quantities needed to be extracted
from structured text fields.

Further analyzing the per-dataset performance,

we identified patterns that explain specific drops in
accuracy.

In the 075_Mortality dataset, focused on
category questions, all incorrect predictions oc-
curred in queries requiring the identification of the
entity with the highest or lowest average rate. The
system consistently inverted the aggregation logic,
incorrectly assuming that higher "Rate" values in-
dicated better outcomes, whereas lower rates were
preferable. This reveals a limitation in inferring the
semantic orientation (i.e., whether minimizing or
maximizing is desirable) based solely on dataset
structure.

In the 068_WorldBank_Awards dataset, primar-
ily involving boolean questions, errors arose from
dataset ambiguities. Even manual inspection re-
vealed that answering required domain knowl-
edge beyond the available data preview, as column
names and sample rows were insufficient to disam-
biguate the intended meaning without additional
context.

6 Conclusion

In this work, we presented QleverAnswering-
PUCRS, a modular system for Table Question An-
swering that relies on code generation over struc-
tured data. Our approach generates single-line Pan-
das expressions to extract answers, demonstrating
strong performance across multiple semantic cate-
gories and significantly surpassing the task baseline
in both Databench and Databench Lite evaluations.

Despite these promising results, our analysis re-
vealed specific limitations. The system struggled
to correctly infer the semantic orientation of met-
rics, particularly in tasks requiring judgment on
whether lower or higher values are preferable, and
showed difficulties when answering questions that
demanded external domain knowledge beyond the
provided data structure.

For future work, we plan to explore multi-step
query execution strategies to improve reasoning
over complex tabular data. We also intend to in-
vestigate the impact of model size on performance,
assess the system’s sensitivity to different prompt
components, and evaluate iterative error correction
methods to determine if multiple repair attempts
can further improve accuracy. Additionally, incor-
porating external dataset descriptions or seman-
tic enrichment mechanisms could mitigate context-
related ambiguities.

1347

References
Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,

Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. Preprint, arXiv:2211.10435.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2.5-coder
technical report. Preprint, arXiv:2409.12186.

Nengzheng Jin, Joanna Siebert, Dongfang Li, and Qing-
cai Chen. 2022. A survey on table question answer-
ing: Recent advances. In Knowledge Graph and
Semantic Computing: Knowledge Graph Empow-
ers the Digital Economy, pages 174–186, Singapore.
Springer Nature Singapore.

Giang Nguyen, Ivan Brugere, Shubham Sharma, San-
jay Kariyappa, Anh Totti Nguyen, and Freddy Lecue.
2025. Interpretable llm-based table question answer-
ing. Preprint, arXiv:2412.12386.

Jorge Osés Grijalba, L. Alfonso Ureña-López, Euge-
nio Martínez Cámara, and Jose Camacho-Collados.
2024. Question answering over tabular data with
DataBench: A large-scale empirical evaluation of
LLMs. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 13471–13488, Torino, Italia.
ELRA and ICCL.

Jorge Osés Grijalba, Luis Alfonso Ureña-López, Euge-
nio Martínez Cámara, and Jose Camacho-Collados.
2025. SemEval-2025 task 8: Question answering
over tabular data. In Proceedings of the 19th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2025), Vienna, Austria. Association for Computa-
tional Linguistics.

Qi Shi, Han Cui, Haofeng Wang, Qingfu Zhu, Wanx-
iang Che, and Ting Liu. 2024. Exploring hybrid
question answering via program-based prompting.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 11035–11046, Bangkok, Thai-
land. Association for Computational Linguistics.

Wei Zhou, Mohsen Mesgar, Annemarie Friedrich, and
Heike Adel. 2025. Efficient multi-agent collabora-
tion with tool use for online planning in complex
table question answering. In Efficient Multi-Agent
Collaboration with Tool Use for Online Planning in
Complex Table Question Answering.

1348

https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2412.12386
https://arxiv.org/abs/2412.12386
https://arxiv.org/abs/2412.20145
https://arxiv.org/abs/2412.20145
https://arxiv.org/abs/2412.20145

A Prompt Templates

A.1 Metadata Extraction Prompt

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are an expert in Python and Pandas
(version 2.2.2). Analyze a DataFrame and a query to infer key metadata required to process the
query.

Task:
Based on the information provided:
1. Columns Used: Identify the relevant column(s) for answering the query.
2. Column Types: Provide the data types of the relevant columns.
3. Response Type: Choose one of: `boolean`, `number`, `category`, `list[category]`, or

`list[number]`. No other formats are allowed.
4. Sample Answer: Generate a plausible sample answer based on the query and DataFrame preview,

aligned with the Response Type.

Requirements:
- Pay close attention to what the query is asking for, it can be tricky.
- Only include columns explicitly needed for the query.
- Base the sample answer on plausible values from the provided DataFrame preview.
- Ensure the response is concise and well-structured.
- Do not provide any extra explanation or context beyond the requested metadata.

Output Format:
Columns Used: (columns_used)
Column Types: (column_types)
Response Type: (response_type)
Sample Answer: (sample_answer)
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
DataFrame Preview:
`{df_str}`

Columns Information:
`{columns_info_str}`

Query:`{query}`
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|> Response:

A.2 Expression Generation Prompt

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are working with a pandas DataFrame
in Python (version 2.2.2), named `df`.

Result of `print(df.head(2))`:
`{df_str}`

The following information was inferred from the DataFrame and query, you MUST use it to generate the
expression:

`{generated_information}`

Instructions:
1. You are tasked to convert the query into **a SINGLE expression** using Pandas (version 2.2.2).
2. The result of the expression MUST be one of the following types: `boolean`, `number`,

`category`, `list[category]`, or `list[number]`.
3. You MUST NOT return a DataFrame or any type not listed above.
4. **STRICTLY FORBIDDEN**: Writing multi-line code, defining variables, or using statements like

`import`, `print`, or assignments (e.g., `x = ...`).
5. The Python expression MUST have only ONE line of code that can be executed directly using the

`eval()` function.
6. **DO NOT USE NEWLINES** in the expression. Only return the single expression directly.
7. **DO NOT QUOTE THE EXPRESSION**. The output must ONLY be the raw code of the single expression.

*** Pay CLOSE attention to what the query is asking for, it can be tricky. ***
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Query: `{query}`
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>Expression:

1349

A.3 Error Fixing Prompt

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are working with a Pandas DataFrame
in Python (version 2.2.2) named `df`. Your task is to fix a failed Pandas expression by
generating a new one that avoids the same error.

Below is a preview of the DataFrame (result of `print(df.head())`):
`{df_str}`

Task:
1. Analyze the provided DataFrame, query, expected expression reponse information, previous

expression, and encountered error.
2. Generate a new expression that solves the query and prevents the error.

Previous Attempt:
Expression: `{previous_expression}`
Error: `{error_encountered}`

Expected Expression Reponse Information:
`{generated_information}`

Instructions:
1. The new expression MUST resolve the query and fix the error encountered previously.
2. The result of the expression MUST be one of the following types: `boolean`, `number`,

`category`, `list[category]`, or `list[number]`. No other types are allowed.
3. You MUST NOT return a DataFrame, dictionary, or any type not explicitly listed above.
4. The Python expression MUST consist of ONLY ONE line of code and MUST be directly executable using

the `eval()` function.
5. **STRICTLY FORBIDDEN**: Writing multi-line code, defining variables, or using statements like

`import`, `print`, or assignments (e.g., `x = ...`).
6. **DO NOT INCLUDE NEWLINES** in the expression. Only provide a SINGLE LINE of code.
7. **PRINT ONLY THE RAW EXPRESSION**: Do not include explanations, comments, or quote the

expression. The output must be directly evaluable.
8. Ensure the new expression fixes the error while strictly adhering to these rules. Failure to

comply will result in failure of execution.

*** Pay CLOSE attention to what the query is asking for, it can be tricky. ***
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Query: `{query}`
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>Expression:

1350

