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Abstract

In today’s digital era, individuals convey their
feelings, viewpoints, and perspectives across
various platforms in nuanced and intricate ways.
At times, these expressions can be challenging
to articulate and interpret. Emotion recogni-
tion aims to identify the most relevant emo-
tions in a text that accurately represent the
author’s psychological state. Despite its sub-
stantial impact on natural language processing
(NLP), this task has primarily been researched
only in high-resource languages. To bridge this
gap, SemEval-2025 Task 11 introduces a multi-
lingual emotion recognition challenge encom-
passing 32 languages, promoting broader lin-
guistic inclusivity in emotion recognition. This
paper presents our participation in this task,
where we introduce a language-specific fine-
tuned transformer-based system for emotion
recognition and emotion intensity prediction.
To enhance generalization, we incorporate a
multi-sample dropout strategy. Our approach
is evaluated across 11 languages, and experi-
mental results demonstrate its competitive per-
formance, achieving top-tier results in certain
languages.

1 Introduction

Understanding emotions expressed in a text has
gained significant attention in natural language pro-
cessing (NLP) due to its wide-ranging applications
in sentiment analysis, mental health monitoring,
and human-computer interaction (Tao and Fang,
2020; Saffar et al., 2023). While sentiment analysis
primarily focuses on classifying text into positive,
negative, or neutral categories, emotion classifica-
tion provides a more granular understanding by
identifying specific emotions such as joy, sadness,
anger, and fear (Mohammad et al., 2018; Ameer
et al., 2023).

However, though there are several research on
emotion detection in mid- to high-resource lan-
guages such as English, Arabic, and Spanish (Mo-

hammad et al., 2018; Saravia et al., 2018; Kumar
et al., 2022), very few emotion recognition jobs are
done in low-resource languages such as Afrikaans,
Hausa, and Romanian (Muhammad et al., 2025a).
To bridge this major research gap in emotion recog-
nition, (Muhammad et al., 2025b) introduces a task
in SemEval-2025. The task consists of three dif-
ferent tracks. Track A is classifying emotion in a
sentence which is structured as a multi-label clas-
sification task. Except for English and Afrikaans,
sentences in all other languages are required to
be classified into six different emotions such as
“anger”, “fear”, “joy”, “sadness”, “surprise”, and
“disgust”. The “disgust” and “surprise” emotion
classes are absent for the English and Afrikaans
languages respectively. When a sentence doesn’t
fall into any of the emotion classes it is categorized
as the no emotion instance. Track B is to predict
the degree of intensity of each recognized emotion.
Track C is to predict the perceived emotion labels
of a new text instance in a different target language
given a labeled training set in one of the support
languages. Among the three tracks, we have partic-
ipated in the first two. To demonstrate a clear view
of the task definition, we articulate an example in
Table 1 for the English language.

Sentence Track A Track B

I can’t believe it! I
won the scholarship!
This is amazing!

[0 0 1 0 1] [0 0 3 0 3]

Table 1: Example of Track A and Track B for SemEval-
2025 Task 11. In Track A, the values 0 and 1 repre-
sent the absence and presence of a specific emotion,
respectively. In Track B, the intensity of an emotion
is indicated on a scale from 0 to 3, with higher values
signifying greater emotional intensity. The classes are
presented in the same order as mentioned in the above
description.
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To address the challenges of multilingual and
multi-label emotion recognition, as well as emo-
tion intensity prediction, we propose a system in
this paper. Our system leverages language-specific
transformers to extract contextualized features for
a sentence. We utilize a multi-sample dropout strat-
egy for better generalization in our system.

The remaining parts of this paper are organized
as follows: Section 2 introduces our proposed sys-
tem for emotion recognition and emotion intensity
prediction. Section 3 details our experimental set-
tings and evaluation. Section 4 offers insightful
discussion. Finally, we conclude our paper and
suggest potential avenues for future research in
Section 5.

2 System Overview

This section provides an overview of our proposed
system for SemEval-2025 Task 11: Bridging the
Gap in Text-based Emotion Detection. The com-
petition consists of three separate tracks, and we
have participated in the first two. Track A focuses
on detecting emotions in textual data across multi-
ple languages, while Track B involves predicting
emotion intensity. We have participated across 11
languages for both tracks, as summarized in Ta-
ble 2. Figure 1 presents a high-level illustration of
our proposed system.

Given an input sentence, our system first encodes
it with a language-tuned transformer (Vaswani
et al., 2017). In addition to the contextual em-
bedding from the transformer, we later use a multi-
sample dropout (Inoue, 2019; Aziz et al., 2023)
procedure to improve the generalization ability of
the system. To obtain final logits (unnormalized
scores), we fuse the logits from different dropout
samples. Finally, we normalize the logits with sig-
moid function (Han and Moraga, 1995) and predict
with global thresholding.

2.1 Transformer Models

Unlike conventional sequence-based architectures
such as LSTM (Schuster and Paliwal, 1997) and
CNN (Goodfellow et al., 2016), transformer mod-
els effectively capture long-range dependencies
within a sequence. Leveraging multi-head atten-
tion and positional embeddings enhances token
interactions and contextual understanding. We fine-
tune multiple transformer models across various
languages to extract contextualized text representa-
tions, as illustrated in Table 2.

Language Transformer Model

Amharic (amh) Davlan/xlm-roberta-base-
finetuned-amharic

Algerian Arabic
(arq)

Davlan/xlm-roberta-base-
finetuned-arabic

Mandarin Chi-
nese (chn)

google-bert/bert-base-
chinese

German (deu) dbmdz/bert-base-german-
uncased

English (eng) Emanuel/twitter-emotion-
deberta-v3-base

Spanish (Latin
American)
(esp)

bertin-project/bertin-
roberta-base-spanish (de la
Rosa et al., 2022)

Hausa (hau) Davlan/bert-base-
multilingual-cased-
finetuned-hausa

Portuguese
(Brazilian)
(ptbr)

eduagarcia/RoBERTaLexPT-
base (Garcia et al., 2024)

Romanian (ron) readerbench/RoBERT-
base (Masala et al., 2020)

Russian (rus) seara/rubert-base-cased-
russian-emotion-detection-
cedr

Ukrainian (ukr) youscan/ukr-roberta-base

Table 2: Language-specific transformers used in our pro-
posed system. The URLs of the Hugging Face models
are provided in Table 7 in Appendix A.

2.2 Multi-sample Dropout

In deep neural networks, dropout is an efficient reg-
ularization strategy for better generalization (Sri-
vastava et al., 2014). It randomly drops a portion of
neurons from the network to prevent dependency
among them and hence reduce over-fitting on the
training data. As a result, the trained model shows
better performance on unseen data. To further
enhance the generalization and fast training, (In-
oue, 2019) proposed the multi-sample dropout tech-
nique. In contrast to the original dropout, features
are fed into multiple samples of different dropout
masks. Then the output goes to fully connected lay-
ers of shared weights. The resulting logits are then
used for loss calculation. The final loss is estimated
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Figure 1: Overview diagram of our proposed system for SemEval-2025 Task 11: Bridging the Gap in Text-based
Emotion Detection.

by averaging the observed losses across different
samples to achieve a single representation of an
input. We utilize a three-sample dropout technique
in our proposed system.

2.3 Emotion Classification

During inference, let us get Logit1, Logit2, ...
Logitn from n dropout samples. Then we arith-
metic average the logits and pass the output into
the sigmoid function (Han and Moraga, 1995) as
follows:

y = Sigmoid
(∑n

i=1 Logiti
n

)
(1)

Finally, we predict using thresholding: emotion
probabilities y less than the threshold are classified
as ‘no emotion’, while those greater than or equal
to the threshold are classified as ‘yes’.

2.4 Emotion Intensity Prediction

Track B involves estimating the intensity of emo-
tions for each target class. The intensity levels are
classified into four distinct groups: No emotion
(0), Low intensity (1), Moderate intensity (2), and
High intensity (3). Let p be the probability under

which probabilities are predicted to be No emotion
(0 intensity) of a class. The remaining probability,
(1 − p), is evenly distributed into three segments.
Each segment has a length of 1−p

3 , denoted as l.
The predicted intensity levels, I , are then deter-
mined as follows:

I =





No, if y < p,

Low, else if p ≤ y < p+ l,

Medium, else if p+ l ≤ y < p+ 2× l,

High, otherwise.
(2)

3 Experiments and Evaluation

3.1 Dataset Overview

To demonstrate the effectiveness of participants’
proposed system for emotion classification, the
organizers of SemEval-2025 Task 11 have re-
leased two benchmark datasets. The BRIGHTER
dataset (Muhammad et al., 2025a) covers 28 lan-
guages, while EthioEmo (Belay et al., 2025) in-
cludes 4 Ethiopian languages, aiming to bridge
the gap in text-based emotion recognition. For
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our participation, we have worked with 10 lan-
guages from BRIGHTER and one from EthioEmo
(Amharic), covering a total of 11 languages. Fig-
ure 2 in Appendix B illustrates the dataset statistics
across the train, development, and test sets for these
languages. Notably, the development set contains
significantly fewer samples compared to the train
and test sets for all languages. Both datasets sup-
port six emotion classes: “anger”, “fear”, “joy”,
“sadness”, “surprise”, and “disgust”. However, the
“disgust” class is absent in English, and the “sur-
prise” class is absent in Afrikaans. Additionally,
the datasets exhibit a long-tail distribution problem
across emotion classes (Muhammad et al., 2025a).
During the evaluation stage, we combine the train-
ing and development sets to enhance model training
and assess its performance on the unseen test set
provided in the Codabench competition1.

3.2 Evaluation Measures

The organizers of SemEval-2025 Task 11 employed
various evaluation metrics. The primary metric for
Track A and Track C is the macro-average F1 score.
For Track B, which focuses on emotion intensity
prediction, the Pearson correlation coefficient is
used.

3.3 Parameter Settings

In this section, we outline the configuration details
of our proposed system, developed for SemEval-
2025 Task 11. We fine-tune multiple transformer
models available in Hugging Face (Wolf et al.,
2019) for various languages. To ensure repro-
ducibility, we conduct experiments using a T4
GPU on Google Colab (Bisong, 2019), setting the
manual seed to 66. We set the classifier learn-
ing rate to 0.0001 to facilitate faster convergence.
For optimization, we employ the AdamW algo-
rithm (Loshchilov and Hutter, 2017). Additionally,
we implement a multi-sample dropout strategy with
probabilities ranging from 0.1 to 0.3. The hyperpa-
rameter settings and their optimal values are sum-
marized in Table 3. All other parameters remain at
their default values.

3.4 Results and Analysis

Performance comparison of our proposed system
with the baseline (Muhammad et al., 2025b) for
Track A and Track B are summarized in Table 4
and 5 respectively. Here, “# Systems” indicates the

1https://www.codabench.org/competitions/3863/

Hyper-parameters Optimal Value

Batch size 16

Encoder learning rate 3e-5

Number of epochs 9

Max-len 256

Multi-sample dropouts {0.1, 0.2, 0.3}

Threshold, p in Eq. 2 0.4

Table 3: Hyperparameter settings for our system.

number of systems reported in the official ranking
for a particular language. Following the benchmark
of SemEval-2025 task 11, the evaluation is con-
ducted using the primary evaluation metric, macro-
average F1 and Pearson correlation (R) score for
track A and track B respectively.

The performance table shows that our system
achieves the highest result in the rus language and
the lowest result in the ukr language for Track A.
For Track B, the highest Pearson correlation is ob-
served for the amh language, while the lowest is
for the arq language. Our system performs com-
petitively on the leaderboard in certain languages,
achieving the highest Pearson correlation for the
amh language among participants. For a detailed
comparison of results across participants, we refer
to (Muhammad et al., 2025b).

Language
CSECU-
Learners Baseline

#
Systems

rus 0.8469 (20th) 0.8377 (25th) 44

esp 0.7689 (20th) 0.7744 (18th) 44

ron 0.7471 (6th) 0.7623 (3rd) 39

eng 0.7381 (29th) 0.7083 (45th) 74

amh 0.7023 (3rd) 0.6383 (15th) 40

hau 0.6735 (9th) 0.5955 (19th) 36

deu 0.6017 (23rd) 0.6423 (16th) 44

chn 0.5999 (16th) 0.5308 (30th) 36

arq 0.5554 (8th) 0.4141 (30th) 36

ptbr 0.5238 (19th) 0.4257 (28th) 37

ukr 0.5062 (23rd) 0.5345 (21st) 36

Table 4: Performance comparison of our proposed sys-
tem with the baseline for Track A across different lan-
guages.
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Language
CSECU-
Learners Baseline

#
Systems

rus 0.8326 (15th) 0.8766 (9th) 25

esp 0.7145 (11th) 0.7259 (10th) 26

ron 0.6370 (10th) 0.5566 (15th) 22

eng 0.6501 (23rd) 0.6415(24th) 36

amh 0.8558 (1st) 0.5079(11th) 20

hau 0.6562 (6th) 0.2703 (23rd) 23

deu 0.5335 (16th) 0.5621 (13th) 24

chn 0.5711 (10th) 0.4053 (21st) 24

arq 0.4430 (12th) 0.0164 (23rd) 23

ptbr 0.4655 (17th) 0.2974 (20th) 23

ukr 0.4780 (12th) 0.3994 (16th) 21

Table 5: Performance comparison of our proposed sys-
tem with the baseline for Track B across different lan-
guages.

4 Discussion

In this section, we estimate the impact of the multi-
sample dropout (MSD) strategy in our CSECU-
Learners system. Additionally, we compare our
system’s results with some state-of-the-art (SOTA)
multilingual transformers and large language mod-
els (LLMs).

Table 6 presents the impact of the MSD tech-
nique on emotion classification and intensity pre-
diction. The results are obtained using tuned thresh-
olds across languages on the test set during the post-
evaluation phase. The thresholds are provided in
Table 8 in Appendix C. For emotion classification,
we observe that the CSECU-Learners system with
MSD outperforms its counterpart without MSD in
7 of the 11 languages we participated in. Similarly,
the MSD-enabled system achieves better results
in 7 languages for intensity prediction. Overall,
the MSD strategy contributes an improvement of
0.30% in macro-F1 and 0.31% in Pearson correla-
tion for Track A and Track B, respectively.

Since SemEval-2025 Task 11 focuses on mul-
tilingual emotion classification, we compare the
performance of our system with several multilin-
gual transformer models. Table 9 in Appendix C
presents a comparison between our system and
three multilingual transformer-based models: Rem-
BERT (Chung et al., 2020), XLM-R (Conneau
et al., 2020), and LaBSE (Feng et al., 2022). This
evaluation is conducted using our system’s perfor-

mance during the official evaluation phase. The
performance scores for multilingual transformers
are taken from BRIGHTER (Muhammad et al.,
2025a). The comparison indicates that our system
outperforms multilingual transformer-based mod-
els in most languages across both tracks.

Large Language Models (LLMs) have recently
demonstrated remarkable learning and reasoning
capabilities across various downstream tasks. In
Table 10 in Appendix C, we present a comparative
analysis of several LLMs, including Llama-3.3-
70B (Touvron et al., 2023), Qwen2.5-72B (Qwen
et al., 2025), and DeepSeek-R1-70B (DeepSeek-
AI et al., 2025), alongside our system. The results
indicate that our system achieves superior perfor-
mance over these LLM-based approaches for the
majority of languages. This demonstrates the ef-
fectiveness of our proposed system in the emotion
classification task.

5 Conclusion and Future Direction

This paper presents our proposed system for emo-
tion recognition and intensity prediction. Identi-
fying emotions in a sentence requires more than
just superficial analysis; understanding contextual
meaning is essential. To address this challenge, we
fine-tuned various transformer models across dif-
ferent languages, leveraging their ability to capture
contextual embeddings. Additionally, we incorpo-
rated a multi-sample dropout strategy to enhance
generalization. Experimental results validate the
effectiveness of our proposed approach, demon-
strating competitive performance in comparison to
several existing methods.

In future work, we plan to explore other state-
of-the-art transformer architectures and investigate
the fusion of multiple transformer models. Since
the dataset is imbalanced, we aim to incorporate
weighted loss functions to improve learning across
all classes.

Limitations

Our proposed system utilizes language-specific
transformers, requiring fine-tuning for each lan-
guage, which can be computationally expensive
and time-consuming. Additionally, the perfor-
mance of the model is influenced by threshold tun-
ing, which may vary across different datasets and
may not always generalize well to real-world appli-
cations. Furthermore, the system does not address
the class imbalance problem in this task, which
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Model rus esp ron eng amh hau deu chn arq ptbr ukr Avg.

Track A (Macro F1)

CSECU-Learners .8493 .7693 .8233 .7379 .7047 .6762 .6028 .6171 .5554 .5260 .5075 .6700
- MSD .8416 .7623 .8280 .7385 .6999 .6810 .5918 .6227 .5519 .5206 .4995 .6670

Track B (Pearson Correlation)

CSECU-Learners .8503 .7201 .7417 .6549 .8553 .6558 .5522 .5958 .4430 .5030 .4934 .6423
- MSD .8352 .7107 .7424 .6491 .8505 .6700 .5463 .5852 .4384 .5085 .4950 .6392

Table 6: Impact of the multi-sample dropout strategy in Track A and Track B. The best performance scores are
highlighted in bold.

could impact overall performance.
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A Transformer URLs

Table 7 shows the URLs of the Hugging Face Trans-
formers used for each language in our system.

B Dataset Statistics

Figure 2 presents the distribution of the train, devel-
opment, and test sets for the SemEval-2025 Task
11 dataset. The illustration includes only the lan-
guages in which we participated.

C Performance Evaluation

C.1 Optimal Thresholds
The optimal thresholds used in our system for Track
A and Track B across different languages on the
test set are presented in Table 8. We report the
thresholds both with and without the multi-sample
dropout (MSD) strategy.

C.2 Performance Comparison
Table 9 presents a comparative analysis between
our proposed system and several multilingual trans-
formers. From the various multilingual transform-
ers discussed in BRIGHTER (Muhammad et al.,
2025a), we report the top three performing models.
Similarly, Table 10 provides a performance analy-
sis of several large language models on this task.
All results for multilingual transformers and large
language models are taken from BRIGHTER.
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Language Transformer URL

amh https://huggingface.co/Davlan/xlm-roberta-base-finetuned-amharic

arq https://huggingface.co/Davlan/xlm-roberta-base-finetuned-arabic

chn https://huggingface.co/google-bert/bert-base-chinese

deu https://huggingface.co/dbmdz/bert-base-german-uncased

eng https://huggingface.co/Emanuel/twitter-emotion-deberta-v3-base

esp https://huggingface.co/bertin-project/bertin-roberta-base-spanish

hau https://huggingface.co/Davlan/bert-base-multilingual-cased-finetuned-hausa

ptbr https://huggingface.co/eduagarcia/RoBERTaLexPT-base

ron https://huggingface.co/readerbench/RoBERT-base

rus https://huggingface.co/seara/rubert-base-cased-russian-emotion-detection-cedr

ukr https://huggingface.co/youscan/ukr-roberta-base

Table 7: URLs of language-specific transformers used in our proposed system.
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Figure 2: Train, development, and test set percentages for the languages we participated in.

Model rus esp ron eng amh hau deu chn arq ptbr ukr

Track A: Emotion Classification

CSECU-Learners 0.7 0.4 0.3 0.3 0.5 0.3 0.2 0.1 0.2 0.2 0.1
- MSD 0.6 0.5 0.3 0.3 0.4 0.2 0.2 0.1 0.2 0.1 0.1

Track B: Emotion Intensity Prediction

CSECU-Learners 0.9 0.1 0.2 0.7 0.3 0.1 0.1 0.1 0.2 0.1 0.1
- MSD 0.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1

Table 8: Optimal thresholds for Track A and Track B on the test set.
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Model rus esp ron eng hau deu chn arq ptbr ukr

Track A: Emotion Classification

CSECU-Learners .8469 .7689 .7471 .7381 .6735 .6017 .5999 .5554 .5238 .5062

RemBERT .8377 .7744 .7623 .7083 .5955 .6423 .5308 .4141 .4257 .5345
LaBSE .7562 .7288 .6979 .6424 .5849 .5502 .5347 .4546 .4260 .5007
XLM-R .7876 .2985 .6521 .6730 .3695 .5537 .5848 .3198 .1540 .1777

Track B: Emotion Intensity Prediction

CSECU-Learners .8326 .7145 .6370 .6501 .6562 .5335 .5711 .4430 .4655 .4780

RemBERT .8766 .7259 .5566 .6415 .2703 .5621 .4053 .0164 .2974 .3994
LaBSE .6843 .5689 .3557 .3534 .2613 .2893 .2337 .0142 .2062 .1375
XLM-R .6896 .5572 .3777 .3736 .2468 .3830 .3692 .0089 .1824 .3616

Table 9: Performance comparison between our proposed system and multilingual transformers. The best performance
scores in Track A and Track B are highlighted in orange and green , respectively.

Model rus esp ron eng hau deu chn arq ptbr ukr

Track A: Emotion Classification

CSECU-Learners .8469 .7689 .7471 .7381 .6735 .6017 .5999 .5554 .5238 .5062

DeepSeek-R1-70B .7697 .7329 .6502 .5699 .5191 .5426 .5345 .5087 .5149 .5119
Qwen2.5-72B .7308 .7233 .6818 .5572 .4379 .5917 .5523 .3778 .5160 .5476
Llama-3.3-70B .6261 .6127 .7128 .6558 .5091 .5699 .5336 .5575 .4503 .4234

Track B: Emotion Intensity Prediction

CSECU-Learners .8326 .7145 .6370 .6501 .6562 .5335 .5711 .4430 .4655 .4780

DeepSeek-R1-70B .6228 .6074 .5769 .4808 .3885 .5478 .4857 .3637 .4672 .4354
Qwen2.5-72B .5825 .5111 .5548 .5599 .2700 .4330 .4617 .2954 .3820 .3774
Llama-3.3-70B .5756 .5164 .4587 .4414 .3916 .5346 .5186 .3629 .4090 .3699

Table 10: Performance comparison between our proposed system and large language models (LLMs). The best
performance scores in Track A and Track B are highlighted in orange and green , respectively.
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