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Abstract

Large language models (LLMs) often produce
hallucinations —factually incorrect statements
that appear highly persuasive. These errors
pose risks in fields like healthcare, law, and
journalism. This paper presents our approach
to the Mu-SHROOM shared task at SemEval
2025, which challenges researchers to detect
hallucination spans in LLM outputs. We intro-
duce a new method that combines probability-
based analysis with Natural Language Infer-
ence to evaluate hallucinations at the word level.
Our technique aims to better align with human
judgments while working independently of the
underlying model. Our experimental results
demonstrate the effectiveness of this method
compared to existing baselines.

1 Introduction

Large language models (LLMs) are widely used
for various NLP tasks, such as information re-
trieval (Dai et al., 2024), medical queries (Sing-
hal et al., 2025), and content generation (Coppo-
lillo et al., 2024). Their ability to generate coher-
ent and contextually relevant text has led to an
increasing reliance on them as primary information
sources, sometimes surpassing traditional methods
like search engines, expert consultations, or struc-
tured databases (Dwivedi et al., 2023). This shift
reflects the growing trust in LLMs for fast and ac-
cessible information.

However, a major challenge is their tendency to
produce hallucinations — factually incorrect but
highly persuasive outputs (Ji et al., 2023; Bertetto
et al., 2024). These errors can take various forms,
including false claims (D’Amico et al., 2023), fab-
ricated references (La Quatra et al., 2021), and
made-up biographies (Yuan et al., 2021), often pre-
sented in a way that makes them difficult to dis-
tinguish from accurate information. Since LLMs
generate text based on patterns in their training
data rather than direct verification of facts, they

may confidently assert misinformation, leading
to potential risks in sensitive domains such as
healthcare (Bélisle-Pipon, 2024; La Quatra et al.,
2025), law (Benedetto et al., 2024), and journal-
ism (Spangher et al., 2024; Giobergia et al., 2024).

The problem is further amplified by the fact
that hallucinations are often blended with accu-
rate, truthful statements, making them harder to
detect (Lewis et al., 2020; Borra et al., 2024). A
model may produce a largely correct passage with
only a few inaccurate details, increasing the like-
lihood that users will accept the entire output as
trustworthy. Moreover, the possibility that models
have to generate and deal with multiple languages
(Huang et al., 2024; Savelli and Giobergia, 2024)
can make evaluating these outputs even more com-
plex. As LLMs become more advanced and widely
deployed, addressing their tendency to hallucinate
is critical to ensuring their reliability and safe inte-
gration into real-world applications.

To bring more attention to this issue, the
Multilingual Shared-task on Hallucinations and
Related Observable Overgeneration Mistakes
(Mu-SHROOM) has been introduced at SemEval
2025 (Vázquez et al., 2025). Mu-SHROOM invites
researchers to detect hallucination spans in LLM
outputs across multiple languages and models. The
task specifically focuses on identifying which parts
of a generated text contain hallucinations. Partici-
pants are provided with LLM outputs in different
formats, including raw text, token lists, and logit
values, and are tasked with predicting hallucination
probabilities at the character level.

This work introduces a novel approach that op-
erates at the word level to evaluate hallucinations1.
By leveraging probability-based analysis and a Nat-
ural Language Inference (NLI) model, we compare
each generated token to the most likely alternatives

1The code to replicate the experiments can be found at
https://github.com/MAL-TO/Mu-SHROOM
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from a larger model, identifying potential hallucina-
tions based on inconsistencies in predicted outputs.
Our method aims to improve alignment with human
annotations while remaining model-independent.

1.1 Mu-SHROOM
The objective of this task (Vázquez et al., 2025) is
to identify spans of text within model-generated re-
sponses that represent hallucinations. Participants
must determine which parts of a response produced
by LLMs contain factual inaccuracies. The task is
multilingual and multi-model, as it includes data
from various languages2 and outputs generated by
different publicly available LLMs3.

Dataset. The dataset consists of multiple fields that
capture both the model-generated responses and the
corresponding factuality annotations. Each data
entry includes an ID for identification, a language
code indicating the language of the query, and the
model input, which represents the original question
posed to the LLM. The model output contains the
generated response, and the specific model that
produced it is recorded under a model ID.

Two types of annotations are provided to assess
the factual reliability of the model output: soft la-
bels and hard labels. Soft labels represent a con-
tinuous evaluation of factual accuracy by assigning
probability values to specific spans of text. These
probabilities, ranging from 0 to 1, indicate the like-
lihood that a given segment is hallucinated. A lower
probability suggests a higher likelihood of correct-
ness, whereas a higher probability signals greater
uncertainty or fabrication. Hard labels, on the other
hand, offer a binary assessment of factual errors.
They identify definitive hallucinations by marking
specific spans of text that have been verified as in-
correct. Each hard label is recorded as a pair of
indices representing the start (inclusive) and end
(exclusive) positions of the hallucinated text. For
evaluation, hard labels are used to measure accu-
racy based on intersection-over-union (IoU), while
soft labels are analyzed through Pearson correlation
between system outputs and human ratings.

Each language has three different splits: an unla-
beled training set containing raw samples without

2While the dataset covers 14 languages (Arabic (Modern
standard), Basque, Catalan, Chinese (Mandarin), Czech, En-
glish, Farsi, Finnish, French, German, Hindi, Italian, Spanish,
and Swedish), we only focus on English.

3For the English task, the models considered
are: TheBloke/Mistral-7B-Instruct-v0.2-GGUF,
tiiuae/falcon-7b-instruct (Almazrouei et al., 2023),
and togethercomputer/Pythia-Chat-Base-7B.

labels, a labeled validation set including soft and
hard labels from the annotators, and the test set
used for evaluation purposes. The three sets have
809, 50, and 154 samples, respectively.

2 Related Works

Fact-checking is a common approach to mitigate
hallucinations in LLM outputs (Nakov et al., 2021;
Guo et al., 2022). However, it typically depends
on external knowledge sources such as databases,
search engines, or pre-verified information repos-
itories. These sources, while useful, are often in-
complete, domain-specific, and require continuous
updates to remain relevant (Cheng et al., 2024).
Additionally, integrating them into real-time LLM
applications introduces significant computational
overhead, making the process inefficient and some-
times impractical at scale.

To overcome these limitations, this work pro-
poses an alternative approach based on uncertainty
quantification (UQ), which detects hallucinations
directly from the model’s own outputs without re-
lying on external verification (Kotelevskii et al.,
2022; Vazhentsev et al., 2022). Our methodology
provides a way to assess how confident an LLM is
in its generated text, offering a built-in mechanism
for identifying potentially unreliable information.

Detecting hallucinations at the claim level is a
challenging task (Fadeeva et al., 2024), as a sin-
gle output may contain both accurate and inac-
curate information, requiring finer-grained uncer-
tainty measurement to highlight specific false or
misleading claims. Our work addresses this chal-
lenge by expanding upon previous research in this
direction (Fadeeva et al., 2024), which introduced
a new token-level uncertainty score by aggregat-
ing token uncertainties into claim-level scores. We
adapt their method for word-level detection and in-
troduce a larger model to verify the smaller model’s
output, leveraging its broader knowledge. Addition-
ally, we enhance the hallucination score by factor-
ing in the uncertainty of both the NLI model and
the LLM.

3 Methodology

To detect hallucinated content in a sentence gen-
erated by a model m, we compare it to a larger
model M , which we assume has better general
knowledge. The goal is to check if each word in
m’s output is consistent with what M would gener-
ate. Our method analyzes words individually, using
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both probability scores and an NLI model4.

Word probability from model M. For each word
in m’s output, we provide its preceding context
to M . We then extract the most likely tokens
from M ’s probability distribution until (i) their
combined probability reaches a threshold k, or
(ii) a single token has a probability lower than
ρ5. Therefore, the number of selected tokens N
varies depending on the word. Given the selected
tokens, we determine the probability of the full
word w by summing the probabilities of its tokens:
p(w) =

∑
tj∈w pj , where tj are the tokens forming

w and pj are their probabilities.

Checking semantic consistency with NLI. We
assess whether each word aligns with the original
sentence’s meaning using an NLI model. Such
model determines whether replacing one word with
another changes the meaning of the sentence. If
the sentence is too long, we truncate it around the
word to fit the model’s context window.

The NLI model assigns probabilities for three
possible relationships: Entailment (P+(w)), i.e.,
the word fits naturally in the sentence; Neutral
(P=(w)), i.e., the word has a different meaning but
does not contradict the original sentence; Contra-
diction (P−(w)), i.e., the word changes the mean-
ing of the sentence.

Computing the hallucination score. To mea-
sure hallucination at the word level, we start from
the original approach proposed by Fadeeva et al.
(2024). They compute the hallucination score (HS)
at the claim level as follows:

HS = 1−
∑

p(ci|e+)∑
p(ci|e+) +

∑
p(ci|e−)

(1)

where p(ci|e+) represents the probability of a claim
having positive entailment, and p(ci|e−) corre-
sponds to the probability of a claim having negative
entailment.

We extend their method by forcing it to operate
at the word level and integrating NLI uncertainty:

HS = 1−
∑N

i=1(pi(w) · pnlii (w))
∑N

i=1 pi(w)
(2)

4We used Qwen/QwQ-32B-Preview (Yang et al., 2024) as
M , and cross-encoder/nli-deberta-v3-large (He et al.,
2020) for the NLI task.

5We set k to 0.9 and ρ to 0.005 in our experiments.

where pi(w) represents the probability assigned
by the model to word w in position i, and pnli(w)
is the sum of the probabilities for entailment and
neutrality, defined as follows:

pnli(w) = P+(w) + P=(w) (3)

We incorporate neutral entailment alongside pos-
itive entailment, unlike (Fadeeva et al., 2024), as it
empirically improved results on the validation set.

This formulation in Eq. 2 effectively captures
the inverse relationship between word confidence
and hallucination likelihood while accounting for
semantic coherence through the NLI component.

The baseline methodology operates indepen-
dently of human-annotated ratings, ensuring appli-
cability in scenarios where labeled data is scarce or
unavailable. However, to enhance alignment with
human perception of hallucinations, we introduce
a calibration mechanism through a multiplicative
factor η:

HS∗ = η ·HS (4)

The parameter η serves as an alignment coeffi-
cient that is empirically determined using the vali-
dation dataset to maximize the correlation between
our computed scores and the soft labels provided
by human reviewers. This calibration process al-
lows to fine-tune the sensitivity of the hallucination
detection system to better match human judgment
thresholds.

In our experimental framework, we systemat-
ically evaluate two distinct configurations: (1) a
label-agnostic variant (LAV) where η = 1, which
preserves the model’s inherent hallucination detec-
tion capabilities without reliance on human feed-
back, and (2) a reviewer-aligned variant (RAV)
where η is optimally selected based on validation
data to maximize correlation with human annota-
tions. The former configuration is particularly valu-
able in zero-shot deployment scenarios or when
consistent detection criteria are required across di-
verse domains, while the latter configuration offers
enhanced performance in applications where hu-
man perception of hallucinations is the primary
evaluation metric.

4 Experimental Setup

This section outlines the various methods imple-
mented, which will be evaluated in Section 5 using
the metrics detailed below.
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4.1 Methods

To evaluate the effectiveness of our proposed ap-
proach, we compare it against the baseline methods
proposed by Vázquez et al. (2025).

Mark-None (-All). Trivial baselines where no (all)
the words are considered as hallucinations. This
serves as a lower bound for detection performance.

RoBERTA. We fine-tune a RoBERTA model (Liu
et al., 2019) on the labeled validation set for all
the 14 available languages to classify words as
hallucinations or not. The model was trained for
five epochs with a learning rate of 2e-5 and weight
decay of 0.01.

Fadeeva et al. (2024) We adapt the scoring mecha-
nism described in Eq.1 within our pipeline to evalu-
ate hallucinations at the word level. This allows us
to compare their formulation with ours, remaining
consistent with the purpose of the challenge.

Ours. We evaluate our proposed hallucination de-
tection method with two variants: (1) LAV, which
applies our detection framework without any align-
ment to human annotations and uses only the test
set, and (2) RAV, where we introduce the multiplica-
tive factor η to adjust the hallucination scores based
on the grading patterns of the human reviewers. For
the latter, we use the value that maximizes the cor-
relation with the soft labels, which is η = 1.48, as
shown in Figure 1.

4.2 Evaluation Metrics

We employ two character-level evaluation metrics
proposed by (Vázquez et al., 2025) to measure the
performance of the different methods.

Intersection over Union (IoU) with Hard Labels
to evaluate the overlap between the characters pre-
dicted as hallucinations and the hard labels.

Pearson Correlation with Soft Labels to mea-
sure how well the predicted probability of a char-
acter being part of a hallucination correlates with
the empirical probabilities derived from annotator
judgments.

5 Results

Table 1 compares the performance of different
methods based on the two evaluation metrics de-
scribed above.

As expected, the Mark-None method performs
the worst. Its scores are close to zero for both met-
rics, showing that it fails to capture hallucinated
content. On the other hand, the Mark-All method

Method η ρ IoU

Mark-None - .000 .032
Mark-All - .000 .349
RoBERTa - .119 .031

Fadeeva et al. (2024) - .309 .283
Ours-LAV 1 .300 .310
Ours-RAV 1.48 .324 .311

Table 1: Comparison of the different methods. Best
results in bold, second-best underlined.
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Figure 1: Analysis of ρ and IoU as η changes on the
validation set. In this case, ρ is maximized for η = 1.48.

achieves a relatively high IoU. This is likely be-
cause large portions of the text in this task are hal-
lucinated. However, its correlation score is very
low (ρ = 0.000), meaning it does not align well
with human judgments.

The RoBERTa-based model performs slightly
better. It improves correlation (ρ = 0.119), mean-
ing it captures some alignment with annotator prob-
abilities. However, it has a low IoU, indicating that
it struggles with precise localization.

Our proposed method significantly outperforms
these baselines. We test it in two configurations
described in Section 4. Both variants of our method
achieve the highest overall performance as they pro-
vide the best balance between the two considered
metrics. The label-agnostic model (LAV) reaches
a correlation of ρ = 0.300 and an IoU of 0.310.
This surpasses in IoU the scoring method proposed
in (Fadeeva et al., 2024) and adapted to our sce-
nario while maintaining a similar correlation. The
reviewer-aligned version (RAV) further improves
correlation (ρ = 0.324) while keeping a strong
IoU (0.311). This result shows that our approach
effectively identifies hallucinated content. When
properly calibrated, it also aligns well with hu-
man judgments, thus providing a strong balance
between accurate hallucination detection and agree-
ment with human perception.

Impact of η. Figure 1 shows how IoU and correla-
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tion change as η varies from 0 to 5. When η = 1,
the method is label-agnostic. The highest Pearson
correlation (0.324) occurs at η = 1.48 (yellow dot-
ted line), indicating the best alignment with human
soft labels. IoU remains stable across different η
values, as expected. Even after applying the cor-
rection factor, hallucination failure detection (HS
= 0) stays unchanged. These results confirm that
tuning our hallucination scores using the validation
set improves performance. The reviewer-aligned
method (η = 1.48) better matches human percep-
tion of hallucinations while still performing well
on the hard label detection task.

5.1 Limitation of the Proposed Method

Our method is effective at detecting hallucinations,
but it has a key limitation. The model generates
text step by step, using all previous tokens as con-
text. If a hallucination appears early, it becomes
part of this context. The model then builds on the
false information, creating more text that fits the
hallucination. This makes it difficult to spot later
hallucinations that seem consistent with the first
one. As a result, the model may correctly detect
the initial false statement but fail to identify the
ones that follow. This creates a propagation effect,
where one mistake leads to more undetected errors.

For example, consider the following case from
the test set:

Sentence: What is the dry boiling point
of DOT 5 brake fluid?
The dry boil point for DOT5 Brake
Fluid is 212°F (100°C).
Ground Truth: 212°F (100°C)
Our detection: 212°F

Here, our method correctly identifies the first
hallucination (the temperature “212°F”) but fails
to mark the Celsius conversion “(100°C)” as part
of the hallucination. This occurs because once the
model has incorporated the incorrect Fahrenheit
value into its context, the corresponding Celsius
conversion becomes consistent with this value de-
spite both being wrong.

The example that follows further illustrates this
limitation:

Sentence: Which mountain range is Spe-
ichersdorf located near?
Speicersdorf is located in the
Black Forest mountain region of
Germany.
Ground Truth: Black Forest
Our detection: Black

In this case, our method identifies only the first
word of the hallucinated mountain region (“Black”)
but misses “Forest”. Once the context includes
the word “Black”, the word “Forest” becomes a
natural and expected continuation, even though
both words are factually incorrect.

This limitation shows the difficulty of detect-
ing linked hallucinations when relying only on the
model’s confidence in a single word, especially if
the context is already hallucinated.

6 Conclusion

This work addresses the Mu-SHROOM shared task
at SemEval 2025, focusing on detecting word-level
hallucinations in LLM outputs. We introduce a
novel approach that uses a larger model validation
without the need for external knowledge sources.

Our method achieves strong results compared to
the proposed baselines, proving to be an excellent
starting point for evaluating hallucinations when
a ground truth or external sources are unavailable.
One key limitation is handling multiple connected
hallucinations. The model generates each word
based on past text. If a hallucination appears, it
becomes part of the context. The model may then
continue building on this false information, making
the hallucination harder to detect. This can lead to
a chain of believable but incorrect statements. To
address this, future work could use a broader con-
text or develop mechanisms to review and correct
past text when a hallucination is found.
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