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Abstract

In this work, we tackle the challenge of multi-
label emotion classification, where a sentence
can simultaneously express multiple emotions.
This task is particularly difficult due to the
overlapping nature of emotions and the lim-
ited context available in short texts. To ad-
dress these challenges, we propose an ensem-
ble approach that integrates Pre-trained Lan-
guage Models (BERT-based models) and Large
Language Models, each capturing distinct emo-
tional cues within the text. The predictions
from these models are aggregated through a
voting mechanism, enhancing classification ac-
curacy. Additionally, we incorporate threshold
optimization and class weighting techniques to
mitigate class imbalance. Our method demon-
strates substantial improvements over baseline
models. Our approach ranked 3rd out of 90 on
the English leaderboard and exhibited strong
performance in English in SemEval-2025 Task
11 Track A.

1 Introduction

Emotion classification is crucial in various natural
language processing (NLP) applications, including
customer feedback analysis, mental health monitor-
ing, and social media sentiment tracking. Unlike
traditional sentiment analysis, which categorizes
text into positive, negative, or neutral sentiments,
multi-label emotion classification is more complex,
as a single sentence can express multiple emotions,
such as joy, anger, and sadness (Strapparava and
Mihalcea, 2008), as shown in Figure 1.This com-
plexity arises from the subjective nature of emo-
tions, their overlapping characteristics, and the am-
biguity in short texts.

Although transformer-based models, particularly
BERT and its variants, have shown promising re-
sults in capturing semantic features and contex-
tual dependencies (Vaswani, 2017), challenges per-
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sist, including class imbalance, difficulties in dis-
tinguishing subtle emotional expressions, and the
need for better generalization across languages
(Conneau, 2019).

Figure 1: Example of the Multi-Label Emotion Classifi-
cation task

In this study, we focus on multi-label emotion
classification as defined in SemEval-2025 Task 11
Track A (Muhammad et al., 2025a), which aims to
evaluate NLP systems’ ability to identify multiple
emotions in a given text. We propose an ensemble
approach, integrating multiple BERT-based pre-
trained language models (PLMs) (such as BERT,
RoBERTa (Liu et al., 2019), and other variants)
along with large language models (LLMs) to cap-
ture diverse emotional cues (Brown et al., 2020).
The predictions from these models are aggregated
using a voting mechanism, which enhances robust-
ness and accuracy. By leveraging both pretrained
transformers and LLMs, our approach effectively
captures the complex and overlapping nature of
emotions, improving the generalization across var-
ied emotional expressions.

In addition to the ensemble strategy, we incor-
porate threshold optimization and class weighting
to address class imbalance and improve decision
boundaries. These techniques ensure that under-
represented emotions are adequately considered,
leading to significant performance improvements
over baseline models and enhancing our system’s
effectiveness in multi-label emotion classification.
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2 Related Work

The fundamental challenge in multi-label emo-
tion classification lies in detecting non-exclusive
emotional states within textual expressions. Early
methodologies predominantly employed lexicon-
based systems combined with statistical classifiers
like SVMs (Mohammad and Turney, 2013), utiliz-
ing hand-engineered features such as emotion-word
counts and syntactic patterns. While effective for
coarse-grained analysis, these approaches exhib-
ited limitations in handling three critical aspects:
(1) contextual polysemy in emotional lexicons (e.g.,
"cold" indicating either temperature or emotional
detachment), (2) compositional semantics in multi-
emotion expressions, and (3) cross-lingual general-
izability.

Currently, pre-trained language models, espe-
cially BERT and its variants, have performed well
in sentiment multi-label classification tasks. These
models effectively capture contextual information
through a bidirectional Transformer architecture,
improving classification accuracy. Studies have
shown that PLMs generally outperform traditional
methods and early deep learning models. In multi-
label prediction, the binary cross entropy loss func-
tion is widely used to deal with the independence of
each label (Zhang and Wallace, 2015). At the same
time, a weighted loss function is used to adjust
the label weights to address the label imbalance
problem. In addition, some studies have further
improved the classification effect by modeling the
dependencies between labels through graph neu-
ral networks (GNNs) or conditional random fields
(CRFs) (Tenenboim et al., 2009). In general, PLMs
perform significantly better than traditional meth-
ods in this task and have achieved good results on
multiple standard datasets.

In the task of sentiment multi-label classification,
large language models have performed well, espe-
cially in capturing the complex sentiment in text
and the relationship between labels. LLMs usu-
ally perform label prediction through generative
or sequence-to-sequence (Seq2Seq) methods, and
mine the pre-trained knowledge of the model by
designing appropriate prompts. In addition, similar
to PLMs, LLMs also use weighted loss functions
to solve the label imbalance problem and combine
multi-task learning to further improve the classifi-
cation effect (Raffel et al., 2020). Although LLMs
have achieved excellent results in sentiment multi-
label classification, their huge computational re-

quirements remain a challenge.

3 System Overview

As shown in Figure 2, our proposed system is com-
posed of two main stages. In the first stage, we
train and fine-tune three transformer-based mod-
els, BERT, RoBERTa, and DeBERTa (He et al.,
2020), employing strategies such as automatic
threshold search, class weight allocation, and data
augmentation to address challenges like data im-
balance and overfitting. Additionally, we explore
advanced large models, including Qwen2.5 (Yang
et al., 2024) and Llama3.1, to further enhance
performance. In the second stage, we improve
model robustness and accuracy by integrating pre-
dictions from multiple models (RoBERTa, De-
BERTa, Qwen2.5 and Llama3.1), using a hard vot-
ing strategy and cross-validation, ensuring better
generalization and complementary feature learn-
ing.

3.1 Model Architecture

Pre-trained language models (PLMs): Two
Transformer-based models have been fine-tuned
as sequence classifiers: RoBERTa and DeBERTa.
RoBERTa is a pretrained language model based on
the Transformer architecture, introduced by Meta
AI. As an enhanced version of BERT, RoBERTa
significantly improves performance through strate-
gies such as improved training methods, expanded
data, and increased computational resources. De-
BERTa, developed by Microsoft Research , intro-
duces two key innovations on top of BERT: the dis-
entangled attention mechanism and the enhanced
mask decoder. These improvements make De-
BERTa particularly suitable for tasks requiring a
precise understanding of contextual relationships,
such as sentiment analysis and multi-hop reading
comprehension.

Large language models (LLMs): In recent
years, large language models have demonstrated
impressive capabilities in tackling various NLP
tasks. Motivated by these advances, we adopted
two state-of-the-art LLMs, Qwen2.5 and Llama3.1,
to construct our sequence classifier. We begin by
pre-processing our data set using the tokenizers
designed for each model. Next, we fine-tune both
Qwen2.5 and Llama3.1 on the training subset of
our data to adapt them for the specific classification
task. Once fine-tuned, the models are applied to the
test data to generate predictions. Finally, we evalu-
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Figure 2: Overview of our system.

ate the performance of these models by comparing
the predictions with the true labels.

For PLMs, we use it as an encoder and connect
it to a classification layer to get the output, while
for LLMs, we directly get the classification results
of text sentiment in a generative way.

3.2 Automatic Threshold Search

In multi-label classification tasks, the model usu-
ally outputs a probability value for each class (for
example, a value between 0 and 1 generated after
Sigmoid activation (Kingma and Ba, 2014)). Tradi-
tional methods usually use a fixed threshold (such
as 0.5) to binarize these probabilities into 0/1 labels,
but this approach often does not work well when
dealing with imbalanced class distribution or differ-
ences in confidence distribution (Zhang and Zhou,
2013). In order to solve the imbalanced distribution
of class labels mentioned in Section 3.1, we intro-
duced a strategy of setting independent thresholds
for each class to improve the credibility of model
predictions. Specifically, we traverse a series of
candidate thresholds for each class and indepen-
dently search for the optimal threshold based on
its performance on the validation set (Fan and Lin,
2007). This method not only maintains overall pre-
diction accuracy but also significantly improves the
model’s ability to capture low-frequency classes
and complex label relationships, enhancing its ro-
bustness and effectiveness in practical applications.

3.3 Class Weight Allocation

To address overfitting in high-frequency classes
and the probability shift in low-frequency classes
caused by sample imbalance, we not only apply
a separate threshold method but also assign class-
specific weights in the loss function to ensure the
model pays equal attention to all classes during
training. After applying class weight allocation,
threshold search is no longer used and the thresh-
old defaults to 0.5.Taking the cross entropy loss
function as an example, the loss function after in-
troducing weights can be expressed as:

L = − 1

N

N∑

i=1

C∑

c=1

wc · yi,c · log(pi,c) (1)

Among them, wc is the weight of class c, yi,c is
the true label, and pi,c is the predicted label. The
calculation method of each class weight wc is as
follow:

wc =
Ntotal

Nc
(2)

Ntotal is the total number of samples, Nc is the
number of samples of class c

3.4 Data Augmentation

Table 1 shows the distribution of 0 and 1 labels for
each class in the training set. From the figure, we
can clearly see that there is a significant difference
in the distribution of 0 and 1 labels in some senti-
ment classes, which makes the model prone to over-
focus on classes with higher sample sizes when pre-
dicting, and insufficient attention to low-frequency
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Sentiment Negative Positive
Anger 2435 333
Fear 1611 1157
Joy 2094 674
Sadness 1890 878
Surprise 1929 839

Table 1: Label distribution of different emotions in the
training set.

classes. To address this problem, we tried to per-
form data enhancement on low-frequency classes.
Taking "Anger" as an example, we extracted all
"Anger"-labeled texts from the training set and ap-
plied simple data augmentation methods, such as
synonym replacement, back-translation, and recon-
struction using a large language model based on
the original text and labels. It is noteworthy that we
applied data augmentation strategies to each model.

3.5 Ensemble Learning
In multi-label classification tasks, a single model
may not be able to fully capture complex label re-
lationships and semantic features for the following
reasons:

• Model bias: Different model architectures
(such as BERT and RoBERTa) have differ-
ent sensitivities when processing text features.
For example, BERT is good at capturing bidi-
rectional context, while DeBERTa performs
better in decoupling attention mechanisms. A
single model may not be sufficient to fully
model certain classes (such as low-frequency
labels "Anger") or certain specific language
expressions (such as irony, metaphor).

• Variance and risk of overfitting: When the
amount of training data is limited or there
is a lot of noise, a single model is prone to
overfitting the distribution of the training set,
resulting in decreased generalization ability.

• Feature complementarity: Different models
can extract complementary features (for ex-
ample, word-level features and syntactic struc-
ture features). Therefore, by integrating the
results of multiple models, multi-dimensional
information can be integrated to improve the
robustness of the model.

Therefore, we integrate the results of different
models through a hard voting strategy (i.e., directly

Hyperparameters PLMs LLMs
Epochs 10 10
Dropout 0.1 0.05
Optimizer AdamW AdamW
Weight Decay 0.001 0.001
Train Batch Size 16 4
Max Input Length 512 512
Learning Rate 2× 10−5 1× 10−4

Max Output Length 128 128

Table 2: Hyperparameter settings for PLMs and LLMs
training.

counting the predicted labels of multiple models
and selecting the label with the most votes). When
the model’s output is uncertain (e.g., two votes
in favor and two against), the corresponding data
is flagged. These ambiguous cases are then re-
evaluated by the models. If uncertainty persists
after re-inference, a label of 0 or 1 is assigned to
the emotion at random with a probability of 50%.
Based on previous research, we selected RoBERTa,
DeBERTa, Qwen2.5 and Llama3.1 as base models
for integration. At the voting stage, we only use
the thresholds that were trained for each individual
model and do not perform any additional threshold
search.

4 Experimental Setup and Results

4.1 Dataset

We used the BRIGHTER dataset (Muhammad
et al., 2025b) provided by the organizer, which
contains 28 different languages, and a text segment
in the data may be labeled with multiple emotions
(anger, sadness, fear, disgust, happiness, surprise)
instead of a single emotion class. We participated
in this subtask on the English dataset.

4.2 Hyperparameters

Detailed information on the hyperparameter set-
tings of the experiment is shown in Table 2.

4.3 Metrics

The organizer of this evaluation uses the macro F1
score as the main indicator to evaluate the perfor-
mance of the model. In multi-label classification
problems, the macro F1 score is obtained by calcu-
lating the F1 score of each class and averaging the
F1 scores of all classes. The characteristic of the
macro F1 score is that it ignores the difference in
the number of samples in each class and gives each

119



Settings Macro F1 Anger Fear Joy Sadness Surprise
RoBERTa 0.750 0.743 0.818 0.667 0.753 0.769
+ threshold search 0.784 0.788 0.800 0.706 0.833 0.794
+ class weight 0.783 0.774 0.790 0.772 0.758 0.820
+ data augmentation 0.770 0.774 0.841 0.724 0.727 0.781
+ ensemble learning 0.795 0.800 0.774 0.787 0.794 0.818

Table 4: Ablation experiment based on RoBERTa.

class the same weight. First, the recall and pre-
cision of each class are calculated separately and
then the F1 score of each class is obtained based
on the harmonic mean of the precision and recall.
Finally, the F1 scores of all classes are averaged to
obtain the macro F1 score.

5 Results

Table 3 shows the performance of the different base
models in this task. Table 4 shows the experimen-
tal results based on the RoBERTa model and the
improvement methods mentioned in Section 3. It
can be clearly seen from the table that the auto-
matic threshold search and class weight allocation
strategy significantly enhance the model’s atten-
tion to low-frequency classes, thereby effectively
improving the overall performance. However, the
data enhancement method failed to achieve the ex-
pected effect and its improvement was limited to
a slight improvement. Based on the above experi-
ments, we further integrated the RoBERTa model
with the experimental results of adding three im-
provement methods separately. The experiment
shows that this integration strategy significantly
improves prediction accuracy, likely because a sin-
gle model struggles to fully capture complex label
relationships and semantic features in text.

Models Macro F1 Micro F1
BERT 0.724 0.733
RoBERTa 0.750 0.768
DeBERTa 0.739 0.751
Qwen2.5 0.779 0.788
Llama3.1 0.782 0.787

Table 3: Performance of different models on this task.

Finally, we adopted the full model integration
(covering language models and large language mod-
els) as the ultimate solution of the system, and sub-
mitted the prediction result file of the final model
on the test set. The official ranking is shown in
Table 5, and the system won the third place in the

macro F1 indicator.

Rank Team Macro F1
1 PAI 0.823
2 NYCU-NLP 0.822
3 DUT_IR 0.812
4 TeleAI 0.806
5 Pateam 0.805

Table 5: Results of top 5 teams for Task11 Track A
English leaderboard on the test set.

6 Conclusion

This paper introduces the system we designed in
Track A of Semeval-2025 Task 11, which aims to
solve the problem of unbalanced class distribution
that is common in multi-class label classification
tasks. By combining methods such as automatic
threshold search and class weight assignment, we
effectively alleviate the model’s excessive focus on
high-frequency emotions and reduce its tendency
to ignore low-frequency emotions. Based on this,
we further adopt a model integration strategy to
optimize the shortcomings of a single model in
capturing complex label relationships and seman-
tic features in text, and significantly improve the
robustness and generalization ability of the model.
Overall, our system performs outstandingly in the
task of multi-label emotion classification, espe-
cially on the English test set of Track A, where
it achieved an excellent score of third place, verify-
ing the effectiveness and advantages of our method.
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