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Abstract

This paper describes NLP-DU’s entry to
SemEval-2025 Task 11 on multi-label emo-
tion detection. We investigated the efficacy of
transformer-based models and propose an en-
semble approach that combines multiple mod-
els. Our experiments demonstrate that the en-
semble outperforms individual models under
the dataset constraints, yielding superior perfor-
mance on key evaluation metrics. These find-
ings underscore the potential of ensemble tech-
niques in enhancing multi-label emotion detec-
tion and contribute to the broader understand-
ing of emotion analysis in natural language pro-
cessing.

1 Introduction

Emotion detection seeks to identify and catego-
rize emotions conveyed in textual data. This task
presents significant challenges due to the inherently
complex and overlapping nature of human emo-
tions, as well as the difficulty associated with ac-
quiring high-quality labeled datasets. Muhammad
et al. (2025a) introduce the BRIGHTER dataset,
which aims to bridge the gaps in textual emotion
recognition across 28 languages and further en-
riched their semantic evaluation work in Muham-
mad et al. (2025b). Furthermore Belay et al. (2025)
introduce Evaluating the Capabilities of Large Lan-
guage Models for Multi-label Emotion Understand-
ing. Recent research by Zhang et al. (2020) under-
scores the necessity of modeling both label depen-
dence and modality dependence in multi-modal,
multi-label emotion detection, further highlighting
the intricacies involved in this domain.

In our approach, we first explored CNN and
LSTM-based solutions and checked for baseline
performance after training. Then we chose to
explore transformer-based models for multi-label
emotion detection. We experimented with Mod-
ernBERT Warner et al. (2024), DeBERTa He

et al. (2021), ALBERT Lan et al. (2020), XLM-
RoBERTa Conneau et al. (2020), DistilBERT Sanh
et al. (2020), and XLNet Yang et al. (2020), some
state-of-the-art transformer models known for their
strong contextual understanding and generalization
capabilities. To address the challenges posed by
a compact dataset Muhammad et al. (2025a) with
sensitive labeling and emotion context added to
each sentence, we employed data augmentation
techniques and leveraged multiple dataset split-
ting techniques such as balanced stratified K-fold
splitting, tree-based splitting, k-means splitting,
and balanced stratified splitting for robust evalu-
ation. Additionally, we propose an ensemble ap-
proach that combines multiple transformer-based
models, for example, ModernBERT and DeBERTa,
via weighted averaging, improving overall perfor-
mance. To encourage reproducibility, we have re-
leased our code and models, which can be accessed
at: https://github.com/ssadman887/SEMEVAL-
TASK-2025.

2 System Overview

2.1 Data Description

The dataset consists of text samples labeled with
multiple emotional categories: Anger, Fear, Joy,
Sadness, and Surprise. The analysis of text length
distribution reveals that most samples contain be-
tween 5 to 25 words, with a right-skewed distri-
bution indicating that shorter texts are more com-
mon. In terms of class distribution, the dataset is
imbalanced, with Fear and Anger appearing more
frequently than Surprise and Joy.

The correlation analysis between emotions
shows notable relationships, such as a strong nega-
tive correlation between Joy and Fear (-0.49), while
Fear and Sadness exhibit a moderate positive cor-
relation (0.27). These findings provide insights
into the dataset’s structure, which is essential for
guiding preprocessing steps and model training.
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Figure 1: Distribution of Text Length

Figure 2: Correlation Matrix of Emotions

2.2 Key Algorithms and Modeling Decisions

Our system for multi-label emotion detection is
based on a transformer-based architecture. The
system follows a sequence classification approach
where each input text is encoded into contextual
embeddings and passed through a multi-label clas-
sification head.

2.2.1 Data Augmentation
To improve dataset diversity and robustness, a sen-
tence rewriting data augmentation strategy was uti-
lized. This method rephrased sentences while pre-
serving original emotion labels. By creating vari-
ous versions of the same text, the dataset expanded,
enhancing the model’s capacity to generalize across
diverse linguistic emotion expressions. This tech-
nique increased training data volume and intro-
duced more syntactic and lexical variety, thereby
boosting the model’s ability to recognize nuanced
emotional expressions. We used Meta LLaMA 3.1

Input Text

Data Augmentation

Data Preprocessing

Tokenization

Contextual Embeddings

Multi-label Classification Head

Ensembling

Predicted Emotion Scores

Figure 3: Pipeline for multi-label emotion classification

AI (2025) from the Ollama platform on a local
device using an RTX 4050 GPU. We employed
multiple augmentation techniques, discussed in Ta-
ble 1. We checked each data row for discrepancies
and modified accordingly.

2.2.2 Preprocessing Steps
The preprocessing phase aimed to preserve the
data’s textual integrity while aligning it with model
architectures. Minimal text cleaning was conducted
to maintain the original semantic meaning. This
method retained critical linguistic structures, avoid-
ing the unintended loss of emotional nuances. Next,
tokenization was performed using the tokenizers
specific to ModernBERT, DistilBERT, and De-
BERTa, capping sequence length at 512 tokens.
This converted raw text into structured tokens for
transformer-based model processing. Lastly, la-
bel representation used binary encoding for each
emotion category, enabling the model to predict
multiple emotions per input, thus reflecting the
complex interdependencies of human emotional
expressions.

2.3 Model Architecture

The model architecture consists of ModernBERT,
DistilBERT, and DeBERTa as the base models. A
classification head is applied on top, which includes
a fully connected layer with a 0.01 dropout rate to
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Augmentation Tech-
nique

Original Sentence Augmented Sentence

Synonym Replace-
ment

They were dancing to Bolero. They were performing to Bolero.

Perspective Transfor-
mation

I moved my arms, stretching the
muscles.

He moved his arms, stretching the
muscles.

Voice Transformation The cop tells him to have a nice
day.

He was told to have a nice day by
the cop.

Tone Adjustment We ordered some food at McDon-
ald’s instead of buying food at the
theatre because of the ridiculous
prices the theatre has.

We opted for McDonald’s rather
than purchasing food at the the-
atre due to its exorbitant prices.

Tense Consistency About 2 weeks ago I thought I
pulled a muscle in my calf.

About 2 weeks ago I had thought
I had pulled a muscle in my calf.

Tag Question Addition The room was small but brightly
lit.

The room was small but brightly
lit, wasn’t it?

Neutral Modifier Inser-
tion

I still cannot explain this. I still cannot quite explain this.

Table 1: Examples of Data Augmentation Techniques Applied Using Meta LLaMA

prevent overfitting. The output layer uses a sigmoid
activation function to predict multi-label probabili-
ties. The model is trained using the Binary Cross
Entropy with Logits loss function, optimized with
AdamW at a learning rate of 2e-5.

2.4 Training Strategy
The training strategy was designed to optimize
model performance for multi-label emotion classi-
fication while ensuring robustness and generaliza-
tion across diverse data subsets. We employed a 5-
fold Multilabel Stratified Cross-Validation (MSCV)
approach, which preserves the label distribution
across folds in a multi-label setting. For a dataset
D with N samples and K = 5 labels (Anger, Fear,
Joy, Sadness, Surprise), MSCV partitions D into 5
folds {D1, D2, . . . , D5}, where each fold Di main-
tains the proportion of positive instances for each
label k:

propk,i ≈
1

N

N∑

n=1

yn,k, ∀i ∈ {1, 2, . . . , 5}, (1)

where yn,k ∈ {0, 1} is the k-th label for the n-th
sample, and propk,i is the proportion of positive
instances for label k in fold Di. This stratification
ensures that the model is trained and evaluated on
representative subsets, mitigating bias due to label
imbalance.

To prevent overfitting and optimize training ef-
ficiency, early stopping was applied based on the
change in macro F1 score between epochs. Let
F1(e)macro denote the macro F1 score on the valida-
tion set at epoch e. Early stopping was triggered if

Training Parameter Value

Batch Size 16
Epochs 5
Early Stopping Threshold ∆F1 < 0.01

Optimizer AdamW
Learning Rate 2× 10−5

Table 2: Training hyperparameters for model optimiza-
tion.

the improvement in F1 score was below a thresh-
old:

∆F1 = F1(e)macro − F1(e−1)
macro < 0.01, (2)

halting training to retain the model weights from
the epoch with the highest validation performance.
Table 2 summarizes the training hyperparameters.

2.5 Ensembling Strategy

To enhance prediction robustness, we employed
Weighted Ensembling, where predictions were
combined based on model confidence:

ŷensemble = wA · ŷA + wB · ŷB (3)

where wA, wB ∈ [0, 1] and typically wA+wB =
1 to ensure normalized weighting. Furthermore,
we tested both the best model among the folds
and, in other cases, used all folds to predict re-
sults. In a multi-label classification setting with
M models and K labels, majority voting aggre-
gates binary predictions to produce a consensus
prediction. For the n-th sample and k-th label, let
ŷm,n,k ∈ {0, 1} represent the binary prediction
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Figure 4: An example of emotion classification of an
input text

from the m-th model. The ensemble prediction
ŷn,k is determined by majority voting:

ŷn,k = ⊮

(
M∑

m=1

ŷm,n,k ≥
⌈
M

2

⌉)
, (4)

where ⊮(·) is the indicator function, returning
1 if the condition is true and 0 otherwise, and ⌈x⌉
denotes the ceiling function.

2.6 Example Walkthrough
Figure 4 shows an example of emotion classifica-
tion of an input text. We have taken a sample data
from our dataset to show the workflow.

2.7 Addressing Key Challenges
To mitigate the effects of class imbalance, partic-
ularly for underrepresented emotions such as Sur-
prise, we implemented a weighted loss function. In
a multi-label classification setting, the weighted bi-
nary cross-entropy loss adjusts for class imbalance
across labels. For the n-th sample with K labels,
the loss Ln is defined as:

Ln = − 1

K

K∑

k=1

wk ·
[
yn,k · log(σ(ẑn,k))

+ (1− yn,k) · log(1− σ(ẑn,k))
]
, (5)

where wk ≥ 0 is the weight for the k-th label,
yn,k ∈ {0, 1} is the ground truth, and σ(ẑn,k) is

the sigmoid activation of the logit ẑn,k. The total
loss over a batch of N samples is:

Lbatch = − 1

N ·K
N∑

n=1

K∑

k=1

wk·
[
yn,k·log(σ(ẑn,k))

+ (1− yn,k) · log(1− σ(ẑn,k))
]
. (6)

To address class imbalance, oversampling bal-
ances the dataset by increasing the representation
of underrepresented labels. For a dataset D with
N samples and K labels, let yn,k ∈ {0, 1} denote
the k-th label for the n-th sample. The frequency
of positive instances for the k-th label is:

fk =
N∑

n=1

yn,k. (7)

The maximum frequency across all labels is
fmax = maxk{fk}. The oversampling ratio for
the k-th label is:

rk =
fmax

fk
. (8)

For each sample (xn, yn) where yn,k = 1, ap-
proximately ⌊rk⌋ duplicates are created to balance
the dataset.

3 Experimental Setup

3.1 Data Preparation

We applied data augmentation by altering sentence
structures while preserving the original emotions,
increasing dataset diversity. Standard data cleaning
techniques, including special character removal,
and tokenization, were used for preprocessing.

3.2 Data Splitting Strategy

To identify the optimal data partitioning method,
we evaluated four strategies. Tree-based splitting
utilized hierarchical clustering to group similar data
points prior to division. K-Means clustering gener-
ated diverse data clusters for balanced splits. Bal-
anced splitting preserved label distribution across
partitions. Finally, Multilabel Stratified K-Fold
Cross-Validation with five folds maintained label
consistency in each fold. These methods were as-
sessed for both training and prediction to determine
the most effective solution.
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3.3 Training Procedure

Models were trained using a batch size of 16 for
up to 5 epochs, with early stopping applied if the
improvement in F1 score was below 0.01. The
optimizer used was AdamW with a learning rate of
2× 10−5.

3.4 Hardware and Software

All experiments were conducted on the Kaggle
platform using a GPU P100 and a local Ollama
platform using an RTX 4050. The implementation
was done using PyTorch, Transformers (Hugging
Face), and Scikit-learn.

4 Experimental Results and Analysis

We evaluated both individual transformer-based
models and ensemble strategies, using the devel-
opment (Dev) and test datasets. Performance is as-
sessed through F1 scores (macro and micro) and ac-
curacy, providing a comprehensive view of model
effectiveness in this multi-label setting.

4.1 Individual Model Performance

Table 3 summarizes individual model performance.
ModernBERT leads on the Dev

dataset with an F1 score of 0.7842 and accu-
racy of 85.65%, outperforming DistilBERT (F1
= 0.6970, accuracy = 80.17%), XLM-RBase (F1
= 0.6470, accuracy = 77.70%), and XLNet (F1
= 0.6140, accuracy = 71.9%). DeBERTa follows
with an F1 score of 0.7324 and accuracy of 84.48%.
On the Test dataset, ModernBERT and DeBERTa
achieve macro F1 scores of 0.6805 and 0.6930, and
micro F1 scores of 0.7212 and 0.7232, respectively.
Conversely, XLNet, XLM-RLarge (Dev F1 = 0.6342,
Test macro F1 = 0.5762), and ALBERT underper-
form, likely due to pretraining misalignment with
emotional text. The LSTM baseline (Dev F1 =
0.4278, Test macro F1 = 0.3805) highlights trans-
formers’ superiority.

4.2 Ensemble Model Performance

Ensemble methods enhance performance by com-
bining model predictions. The weighted averaging
strategy combines logits as:

ẑensemble
n,k = wA · ẑAn,k + wB · ẑBn,k, (9)

with wA + wB = 1, yielding a prediction
ŷn,k = σ(ẑensemble

n,k ). For ModernBERT+DeBERTa
(w = 0.5, 0.5), this achieves the highest Dev F1

score (0.7886) and Test macro F1 score (0.7086).
Majority voting, defined as:

ŷ
majority
n,k = ⊮

(
M∑

m=1

ŷm,n,k ≥
⌈
M

2

⌉)
, (10)

reaches a Test micro F1 of 0.7457. The best-fold
weighted ensemble, with weights:

wm =
F1best-fold

m∑M
m′=1 F1best-fold

m′
, (11)

achieves the highest Test micro F1 (0.7467),
while best-fold voting yields 0.7432. De-
BERTa+DistilBERT ensembles underperform (e.g.,
weighted Dev F1 = 0.7261, Test micro F1 = 0.7418
for best-fold weighted) due to DistilBERT’s lower
capacity.

4.3 Result Table
Table 3 provides a detailed comparison of all mod-
els and ensembles, highlighting the superiority of
the ModernBERT+DeBERTa combinations across
most metrics.

4.4 Discussion
Transformer-based models outperform traditional
architectures like LSTM, with ModernBERT (Dev
F1 = 0.7842, accuracy = 85.65%) and DeBERTa
(Dev F1 = 0.7324, Test macro F1 = 0.6930) lead-
ing due to their advanced pretraining and attention
mechanisms. Ensemble methods enhance perfor-
mance, with ModernBERT+DeBERTa weighted
averaging (Equation 3) achieving the highest Dev
F1 (0.7886) and Test macro F1 (0.7086), while ma-
jority voting (Equation 4) excels in Test micro F1
(0.7457). The best-fold weighted ensemble (Equa-
tion 5) yields the top Test micro F1 (0.7467). De-
BERTa+DistilBERT ensembles underperform due
to DistilBERT’s lower capacity (Dev F1 = 0.6970).
The poor performance of XLNet, XLM-RLarge, and
ALBERT suggests their pretraining may not suit
emotional text. These results highlight the efficacy
of ensemble learning for multi-label emotion clas-
sification, with future work potentially exploring
dynamic weighting or analyzing underperforming
models for architectural improvements.

5 Conclusion

We employed various data splitting techniques and
augmentation strategies to enhance the robustness
of our training process. One of the key challenges
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Model Name Dev Data Test Data

F1 Score Accuracy F1 Score (Macro) F1 Score (Micro)

LSTM 0.4278 64.20% 0.3805 0.4022
DistilBERT 0.6970 80.17% 0.6521 0.7001
ModernBERT 0.7842 85.65% 0.6805 0.7212
DeBERTa 0.7324 84.48% 0.6930 0.7232
XLM-RBase 0.6470 77.70% 0.5804 0.6234
XLM-RLarge 0.6342 76.33% 0.5762 0.6300
XLNet 0.6140 71.90% 0.5742 0.6265
ALBERT 0.5872 72.20% 0.5659 0.6282

Ensemble Models

ModernBERT+DeBERTa0.5+0.5 weight 0.7886 85.30% 0.7086 0.7443
ModernBERT+DeBERTamajority voting 0.7639 85.42% 0.7034 0.7457
ModernBERT+DeBERTabest fold weighted 0.7399 86.20% 0.7056 0.7467
ModernBERT+DeBERTabest fold voting 0.7528 86.90% 0.7044 0.7432
DeBERTa+DistilBERT0.5+0.5 weight 0.7261 85.17% 0.7004 0.7322
DeBERTa+DistilBERTmajority voting 0.7128 84.31% 0.6947 0.7212
DeBERTa+DistilBERTbest fold weighted 0.7318 85.00% 0.6925 0.7418
DeBERTa+DistilBERTbest fold voting 0.7324 84.48% 0.6943 0.7422

Table 3: Performance of individual and ensemble models on Dev and Test datasets. The best ensemble performance
is underlined.

we encountered was the inherent imbalance in the
dataset, with certain emotions being overrepre-
sented. Additionally, we identified instances of
mislabeling within the training data, which intro-
duced noise into the learning process. Despite these
challenges, our approach enabled us to achieve a
competitive F1 score, demonstrating the effective-
ness of our data handling strategies and model op-
timization techniques.

6 Ethical Considerations

Due to the sensitivity of the training data, there
is a risk of misclassification in sentence predic-
tions, potentially leading to incorrect label assign-
ments. This is particularly concerning for emo-
tionally charged content, where misinterpretation
could have significant implications. To mitigate
such risks, we implemented data augmentation and
rigorous evaluation strategies to enhance model
robustness. Additionally, we emphasize the impor-
tance of human oversight in critical applications to
ensure ethical and responsible deployment of our
system.
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