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Abstract

Food contamination and associated illnesses
represent significant global health challenges,
leading to thousands of deaths worldwide. As
the volume of food-related incident reports on
web platforms continues to grow, there is a
pressing demand for systems capable of detect-
ing food hazards effectively. Furthermore, ex-
plainability in food risk detection is crucial for
building trust in automated systems, allowing
humans to validate predictions. SemEval-2025
Task 9 proposes a food hazard detection chal-
lenge to address this issue, utilizing content
extracted from websites. This task is divided
into two sub-tasks. Sub-task 1 involves clas-
sifying the type of hazard and product, while
sub-task 2 focuses on identifying precise haz-
ard and product “vectors” to offer detailed
explanations for the predictions. This paper
presents our participation in this task, where
we introduce a transformer-based method. We
fine-tune an enhanced version of the BERT
transformer to process lengthy food incident
reports. Additionally, we combine the trans-
former’s contextual embeddings to enhance its
contextual representation for hazard and prod-
uct “vectors” prediction. The experimental re-
sults reveal the competitive performance of our
proposed method in this task, which achieved
7™ place in both sub-tasks. We have released
our code at https://github.com/AhmadMonir-
CSECU/SemEval-2025_Task9.

1 Introduction

Ensuring food safety is a growing concern; iden-
tifying and explaining food risks from online text-
based sources could help mitigate this issue. How-
ever, the explainability of decision mechanisms
related to food risk classification remains underex-
plored. Enhancing this understanding could help
humans quickly assess the validity of predictions
and utilize meta-learning approaches, such as clus-
tering or pre-sorting examples. To address these
challenges, SemEval-2025 Task 9 (Randl et al.,

2025) proposed two sub-tasks: i) Text classifica-
tion for predicting food hazards, which predicts the
type of hazard and product, and ii) Detection of
food hazards and product “vectors”, which aims
to identify the specific hazard and product. To
demonstrate a clear view of the task definition, we
articulate an example in Table 1.

Prior research (de Noordhout et al., 2014; Mar-
vin et al., 2017) showed that developing early detec-
tion methods through compiling epidemiological
data and evaluating cases may help us prevent food-
borne illness outbreaks. To automate food safety
detection, Maharana et al. (2019) investigated sev-
eral machine learning (ML) models, including lin-
ear support vector machines, multinomial Naive
Bayes, and weighted logistic regression along with
over-sampling and under-sampling techniques on
Amazon.com food reviews and FDA food recalls
linked data. However, ML-based approaches are
being limited to learning complex global contex-
tual information resulting in poor performance. To
address this limitation, several studies have ex-
plored probabilistic models (Wang et al., 2023) and
transformer-based approaches (Xiong et al., 2023;
Randl et al., 2024). Nevertheless, transformer-
based models exhibit superior performance com-
pared to other methods.

In this work, we have proposed a method based
on an enhanced Bidirectional Encoder Representa-
tions from Transformers (BERT). We utilize the
contextual embedding from the transformer for
downstream purposes. To predict hazard and prod-
uct “vectors”, we duplicate and concatenate the
embedding, then pass the combined representation
into a classifier for final predictions.

We organize the rest of the paper as follows:
Section 2 describes our proposed system for the
SemEval-2025 food hazard detection task. In Sec-
tion 3, we detail the system design, including pa-
rameter configurations, and present the experimen-
tal results along with a performance analysis. Fi-
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Sub-task 1

\ Sub-task 2

Liquid Whole Egg due to Fipronil | Hazard-category ‘

Product-category Hazard ‘ Product

|
Allan Reeder recalls Cocovite ‘
|
‘ chemical

‘ meat, egg, and dairy products ‘ phenylpyrazole ‘

€ggas

Table 1: An example of SemEval-2025 Task 9.

nally, we conclude with potential future directions
and the limitations of our system in Section 4.

2 Food Hazard Detection Framework

In this section, we introduce our proposed frame-
work for the food hazard detection task. The task
consists of two distinct sub-tasks. Sub-task 1 in-
volves predicting the categories of food hazards
and products. The sub-task 2 focuses on predicting
the exact hazards and products. Both of these are
structured as multi-class classification problems.
Figure 1 illustrates the overview diagram of our
proposed framework.
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Figure 1: Overview diagram for our proposed method
for SemEval-2025 Task 9: Food Hazard Detection Chal-
lenge. Here & indicates concatenation operation.

Our approach incorporates the “Title” and “Text”
fields from the dataset. We represent the sequence
as: “Title” + [DEL] + “Text” as the input to the
transformer where [DEL] indicates a delimiter. We
embed a ‘# token between “Title” and “Text” as
[DEL] to mark the boundary between them. Fol-
lowing (Zhou et al., 2021), we leverage the En-
hanced BERT transformer to capture contextual
embedding of the sequence. For sub-task 1, the
[CLS] token representation is directly fed into the

classification layer. For sub-task 2, we replicate the
[CLS] representation, concatenate the copies, and
then pass the aggregated embedding to the classi-
fier. Finally, the model predicts based on the un-
normalized scores (logits) computed by the Linear
layer (Paszke et al., 2019).

2.1 Encoder Model

Unlike traditional sequence-based models such
as LSTM (Schuster and Paliwal, 1997) and
CNN (Goodfellow et al., 2016), transformer mod-
els can capture long-term dependencies and en-
hance the relationships between tokens in a se-
quence by leveraging multi-head attention and po-
sitional embedding mechanisms. To obtain contex-
tualized feature representations of food hazard con-
texts, we fine-tuned the BERT transformer model
as the encoder.

2.1.1 BERT

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018), de-
veloped by Google’s research team in 2018,
is a language model that leverages the trans-
former (Vaswani et al., 2017) architecture. It was
pre-trained using passages from BooksCorpus (Zhu
et al., 2015) and English Wikipedia. Unlike tradi-
tional unidirectional models, BERT performs bidi-
rectional training of transformers, allowing it to
understand the context of sentences more deeply.
This two-way method has allowed BERT to attain
top performance on different natural language pro-
cessing (NLP) tasks. BERT’s pre-training involves
two tasks. The first one is Masked Language Mod-
eling (MLM). In this task, BERT randomly masks
certain tokens in the input and trains the model to
predict these masked tokens using the surround-
ing context. The second one is the Next Sentence
Prediction (NSP). Here, BERT determines whether
a pair of sentences are consecutive in the original
text.

We utilize the base uncased version of BERT! in

1https://huggingface.co/google—bert/
bert-base-uncased
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our task. It comprises 12 transformer blocks (i.e.,
hidden layers) with 12 attention heads and contains
110M parameters. The hidden size is 768 and the
vocabulary size is 30,522.

2.1.2 Extension of BERT

The original BERT encoder supports up to 512 se-
quence lengths. To handle longer sequences, we
utilize the implementation by (Zhou et al., 2021) of
Enhanced BERT. Unlike other transformer mod-
els that support longer sequences like Modern-
BERT (Warner et al., 2024), Longformer (Beltagy
et al., 2020), it keep the original architecture of the
BERT encoder. Let L be the sequence length that
is greater than 512, the Enhanced BERT segments
the sequence into two overlapping sub-segments
which can be represented as follows:

¢ Segment 1: [CLS] Token;, Tokeno, ...,
Token510, [SEP]

¢ Segment 2: [CLS] Tokeny, 511, Tokenz,_519,
..., Tokeny,_1, [SEP]

Both of them are then forward-passed to the orig-
inal BERT encoder. Then we obtain a merged rep-
resentation of the sub-segments by:

H, = Pad(BERT(Segment, ), bottom padding)
Hjy = Pad(BERT(Segment, ), top padding)
Hy + Hy
T =Ty, T1,.., 111 = ——————
To, Ty 1) My + Ms + ¢
(1)

Here, Hy, Hy,T € REL*? M, and M, are at-
tention masks for segment 1 and segment 2 respec-
tively. The d indicates the hidden size of the en-
coder (e.g., 768 for BERTgAsE). € is a small con-
stant to prevent division by zero.

2.2 Classification

We utilize the [CLS] token embedding, ¢, which
corresponds to 7j in Equation 1, from the trans-
former for classification purposes. For sub-task
1, we directly feed the embedding into a linear
feed-forward layer. For sub-task 2, we duplicate
and concatenate the embedding before passing the
concatenated embedding into the linear layer. The
logits, y, are obtained as follows:

y=cWT +0b, )

Here, W € R"*? p € R™ are the model’s pa-
rameters. n indicates the number of classes to be
predicted. Finally, the model predicts the class
corresponding to the maximum logit.

3 Experiments and Evaluation

3.1 Dataset Overview

To assess the performance of the proposed methods,
the organizers of SemEval-2025 Task 9 introduced
a benchmark dataset (Randl et al., 2025), derived
from CICLe (Randl et al., 2024). This dataset com-
prises manually annotated English food recall re-
ports sourced from official food agency websites,
such as the FDA. Each instance includes six at-
tributes: “year”, “month”, “day”, “country”, “title”,
and “text”. The dataset is partitioned into three
subsets, as detailed in Table 2.

The competition is structured into two sub-tasks.
In sub-task 1, a model is expected to predict the
hazard category and product category associated
with a given instance. Sub-task 2 extends this
challenge by requiring the identification of the ex-
act hazard and product labels. The dataset covers
1,142 distinct products (e.g., “ice cream,” “chicken-
based products,” “cakes”), which are grouped into
22 product categories (e.g., “meat, egg, and dairy
products,” “cereals and bakery products,” “fruits
and vegetables”). Additionally, the dataset contains
128 unique hazard labels (e.g., “salmonella,” “liste-
ria monocytogenes,” “milk and products thereof™),
categorized into 10 broader hazard categories. No-
tably, the dataset exhibits a significant class imbal-
ance (Randl et al., 2024). In the evaluation phase,
we merge the train and validation set to train our
model and evaluate it with the unseen test set in the
Codal.ab competition.

Fold Samples
Train 5082
Validation | 565

Test 997

Total 6644

Table 2: The statistics of the SemEval-2025 Task 9
dataset.

3.2 Evaluation Measures

To evaluate the performance of the participant’s
proposed system, the organizers use the macro-
averaged F1 score (Sokolova and Lapalme, 2009),
which is essential for datasets with a long tail dis-
tribution problem. Given a set of true labels y

2https: //codalab.lisn.upsaclay.fr/
competitions/19955
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and predicted labels ¢, the performance score for a
sub-task aggregates the performance on two classi-
fication tasks by:

Flh = Flmacro(yhagh) (3)

Flp = Flmacro(yp | Z)h = Yh, Z)p) (4)
F1 F1

S = % (5)

Where F'1;, is the macro F1-score for hazard labels
and F'1,, is the macro F1-score for product labels,
conditioned on correct hazard classification. The
evaluation considers both hazard and product clas-
sifications, ensuring a balanced assessment across
different levels of granularity.

food hazard detection. Following the benchmark
set by SemEval-2025 Task 9, system rankings are
determined based on the macro-F1 score. Tables 4
and 5 summarize the performance comparisons for
sub-task 1 and sub-task 2, respectively. Our system
demonstrates competitive performance across both
sub-tasks, highlighting its effectiveness in identi-
fying food hazard categories, product categories,
specific hazards, and specific products. Upon ana-
lyzing Tables 4 and 5, it is evident that sub-task 2
presents greater challenges compared to sub-task
1. This is primarily due to the increased number of
target classes and the pronounced class imbalance,
making accurate predictions more complex.

Team ‘ Macro-F; ‘ Features
33 P ter Setti
arameter Settings Baseline (BERT) | 0.6670 | ttle
In this section, we outline the parameter config- - -
urations for our proposed method. Our model Baseline (TFIDF + | 0.4980 title
is implemented using PyTorch (Paszke et al., LR)
2019) and the Hugging Face Transformers li- Anastasia (1st) 0.8223 year, month,
brary (Wolf et al., 2019). We fine-tune the uncased day, country,
BERTgsEg pre-trained language model, employ- title, text
ing mixed-precision training (Micikevicius et al., MyMy (2nd) 0.8112 | year, month,
2017) through the Apex library?® to enhance com- day, country,
putational efficiency. Optimization is performed title, text
using the AdamW optimizer (Loshchilov and Hut- HU (5th) ‘ 0.7882 ‘ title, text
ter, 2017). The maximum sequence length is fixed BitsAndBites (6th) ‘ 0.7873 ‘ title, text
at 1024 tokens. The optimal hyperparameters, as
determined by validation set performance, are de- ~ CSECU-Learners | 0.7863 | title, text
tailed in Table 3, while default values are main-  (7th)
tained for all other p.a.ra.meters. Training is cgrried ABCD (8th) ‘ 0.7860 ‘ title, text
out on a T4 GPU utilizing Google Colab (Bisong,
MINDS (9th) | 0.7857 | title, text
2019).
Habib  University 0.4482 N/A
Hyper-parameters ‘ Optimal Value (26th)
Training batch size ‘ 8 Howard University- | 0.1426 text
Encoder learning rate ‘ 3e-5 AI4PC (27th)
Classifier learning rate ‘ le-4 Table 4: Performance comparison of our proposed
¢ method (Team CSECU-Learners) with other selected
Number of epochs ‘ 7 participants’ methods for sub-task 1.
Manual seed ‘ 66

Table 3: Hyperparameter settings for our method.

3.4 Results and Analysis

In this section, we present a comparative analysis of
our proposed system against selected methods for

Shttps://github.com/NVIDIA/apex

3.5 Ablation Study

In this section, we evaluate the contribution of vari-
ous components in our model by selectively turning
off them. Our findings indicate that each compo-
nent plays a crucial role in overall performance.
The “text” feature, in particular, has a significant
impact, as removing it leads to a performance drop
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Team ‘ Macro-F; ‘ Features
Baseline (BERT) | 0.1650 | title
Baseline (TFIDF + | 0.1830 | title
LR)
SRCB (1st) | 05473 | title, text
MyMy (2nd) 0.5278 year, month,
day, country,
title, text
MINDS (5th) | 04862 | title, text
Fossils (6th) | 04848 | title, text
CSECU-Learners 0.4797 title, text
(7th)
PuerAl (8th) | 04783 | N/A
Zuifeng (9th) | 04712 | N/A
JU-NLP (25th) | 0.0126 | title, text
Anaselka (26th) | 0.0049 | title, text

Table 5: Performance comparison of our proposed
method (Team CSECU-Learners) with other selected
participants’ methods for sub-task 2.

of 6.59% and 8.95% in macro-F1 scores on the test
set for sub-task 1 and sub-task 2, respectively. Ad-
ditionally, the “title” feature also proves beneficial,
with its removal resulting in a slight decrease in
performance 0.21% for sub-task 1 and 0.18% for
sub-task 2. For sub-task 2, we observe that concate-
nating the [CLS] token embedding enhances the
macro-F1 score by 2.12%. In contrast, that strategy
reduces the macro-F1 by 0.96% for the sub-task
1. This might be because of the larger number of
classes to be predicted for sub-task 2 (128 hazards
and 1142 products) than for sub-task 1 (10 hazard
categories and 22 product categories).

Method | ST-1 | ST-2
CSECU-Learners | 0.7863 | 0.4797

- Title | 0.7842 | 0.4779
-(c® o) |- | 04585
- Text | 0.7204 | 0.3902
+(c® o) | 0.7767 | -

Table 6: Ablation study results for sub-task 1 and sub-
task 2.

Therefore, we can hypothesize that the impact
of feature concatenation on model performance
is not universal; it depends heavily on the scale
and nature of the classification problem. This ap-
proach tends to be advantageous in tasks involving
a large number of classes, where greater represen-
tational power is beneficial. However, in tasks with
relatively few classes, increasing the input dimen-
sionality may introduce unnecessary complexity,
potentially leading to overfitting. In such cases, the
model may learn to rely on spurious patterns in the
data rather than focusing on the core discriminative
features.

4 Conclusion and Future Direction

In this work, we addressed the challenge of food
hazard detection by participating in SemEval-2025
Task 9. We proposed a transformer-based approach,
leveraging an enhanced version of the BERT model
to handle the complexities of lengthy food incident
reports. By combining the transformer’s embed-
dings, our method enhances contextual representa-
tions for accurate hazard and product vector pre-
diction. Our approach demonstrated competitive
performance in this task, highlighting its effective-
ness in classifying hazards and providing precise
explanations for predictions.

In the future, we intend to explore other state-of-
the-art transformer models pre-trained on biomed-
ical datasets, as they may offer enhanced perfor-
mance for this task. Due to the imbalanced nature
of the dataset, we also aim to apply augmentation
techniques that could improve learning across all
classes.

Limitations

Our system can process sequences with a maxi-
mum length of 1024 tokens. However, many food
incident reports exceed this limit, and incorporating
the full text could improve the model’s contextual
understanding. Furthermore, while we utilized the
base version of transformer models, their larger
variants have shown superior performance in var-
ious downstream tasks, an aspect not explored in
this study. Additionally, the issue of class imbal-
ance remains unaddressed, which may limit the
model’s ability to generalize effectively across un-
derrepresented classes, potentially impacting over-
all prediction accuracy.
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