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Abstract
This paper presents the VerbaNexAi Lab sys-
tem for SemEval-2025 Task 2: Entity-Aware
Machine Translation (EA-MT), focusing on
translating named entities from English to
Spanish across categories such as musical
works, foods, and landmarks. Our approach
integrates detailed data preprocessing, enrich-
ment with 240,432 Wikidata entity pairs, and
fine-tuning of the MarianMT model to enhance
entity translation accuracy. Official results re-
veal a COMET score of 87.09, indicating high
fluency, an M-ETA score of 24.62, highlighting
challenges in entity precision, and an Overall
Score of 38.38, ranking last among 34 systems.
While Wikidata improved translations for famil-
iar entities like "Águila de San Juan," our static
methodology underperformed compared to dy-
namic LLM-based approaches (Yuksel et al.,
2025).

1 Introduction

Translating named entities such as proper nouns,
geographic locations, and culturally significant ref-
erences across languages remains a persistent chal-
lenge in natural language processing (NLP). This
difficulty is particularly evident in the English-to-
Spanish language pair, where lexical and cultural
disparities often hinder accurate translation (Co-
nia et al., 2025). For instance, a literal translation
of "The Shawshank Redemption" as "La reden-
ción de Shawshank" fails to convey its identity as
a well-known film, potentially confusing Spanish-
speaking audiences. Similarly, "Eagle of St. John"
requires translation to "Águila de San Juan" to re-
tain its cultural and religious significance rather
than an erroneous "Águila de Jhon." These exam-
ples underscore the importance of entity-aware ma-
chine translation (EA-MT), the focus of SemEval-
2025 Task 2, which seeks to enhance precision in
translating such entities for applications, including
content localization, cross-cultural communication,
and user-facing services.

Human translators excel at navigating these nu-
ances by leveraging cultural knowledge and exter-
nal resources, such as glossaries, to adapt entities
appropriately (Vishwakarma, 2023). For example,
rendering "Thanksgiving" as "Día de Acción de
Gracias" demands understanding its North Ameri-
can cultural context. This task challenges automa-
tion without advanced systems. Neural machine
translation (NMT) has markedly improved fluency
in general translation tasks. Yet, it often strug-
gles with named entities due to insufficient training
data for rare or culturally specific terms and the
absence of real-time contextual adaptation (Zeng
et al., 2023). These shortcomings motivated our
participation in SemEval-2025 Task 2, aiming to
improve entity translation accuracy.

We propose an EA-MT system that combines
MarianMT, an efficient model for English-to-
Spanish translation, with enrichment of 240,432
bilingual entity pairs from Wikidata. This ap-
proach balances computational scalability, suitable
for resource-constrained environments, with pre-
cision for culturally significant entities such as
movie titles, foods, and landmarks. MarianMT’s
lightweight architecture facilitates fine-tuning with
limited resources, while Wikidata’s structured data
addresses data scarcity challenges (Hu et al., 2022).
We aim to narrow the divide between human-like
cultural adaptation and automated scalability, ad-
dressing a pressing need in contemporary NLP.

Our contributions are threefold: (1) a scalable
pipeline for data integration using Wikidata, adapt-
able to various languages and domains; (2) an em-
pirical analysis comparing our static approach to
dynamic LLM-based systems (Yuksel et al., 2025);
and (3) insights into the limitations of static EA-
MT and the demand for real-time, culturally sensi-
tive adaptation. We intend to release our code and
enriched dataset to support further research. This
paper is structured as follows: Section 2 reviews
related work, Section 3 details our methodology,
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Section 4 evaluates performance, and Section 5
summarizes findings and outlines future directions.

2 Related Work

Entity-Aware Machine Translation (EA-MT) has
emerged as a critical subfield in NLP, addressing
the limitations of traditional Neural Machine Trans-
lation (NMT) in handling named entities that re-
quire cultural and contextual precision (Conia et al.,
2025). Recent advancements, such as SemEval-
2025 Task 2, introduce specialized metrics like
M-ETA for entity-specific accuracy and COMET
for overall translation quality. These developments
build upon approaches like Yuksel et al.’s dynamic
LLM-based methods (Yuksel et al., 2025). Un-
like these dynamic strategies, our system leverages
Wikidata as a static knowledge base for entity en-
richment.

Machine translation has evolved significantly
over the years. Early rule-based systems relied on
manually crafted linguistic rules, offering limited
scalability and adaptability. Statistical machine
translation (SMT), exemplified by tools like Moses,
improved upon this by leveraging parallel corpora.
However, it struggled with rare entities and context-
dependent translations due to their reliance on sta-
tistical alignments rather than semantic understand-
ing. The advent of transformer-based NMT models
(Yang et al., 2020) marked a significant leap in
translation quality. Yet, limitations persist in en-
tity translation, as traditional approaches often lack
mechanisms for cultural adaptation and real-time
knowledge integration. Modern neural approaches
like CroCoAlign (Molfese et al., 2024) refine sen-
tence alignment, optimizing training data for NMT
systems.

Introducing models like BERT (Devlin et al.,
2018) brought pre-trained language representations,
further enhancing NMT capabilities. However,
challenges persist, particularly in translating rare
named entities (Saadany et al., 2024). Efforts such
as MOSAICo (Conia et al., 2024) address data
scarcity by providing large-scale, multilingual, se-
mantically annotated corpora. Other techniques
have contributed to improved entity translation,
including entity projection via MT (Jain et al.,
2019) and denoising pre-training with monolin-
gual data (Hu et al., 2022). Our system builds on
these advancements by integrating entity enrich-
ment through Wikidata.

Handling named entities remains a significant

challenge in NMT. Zeng et al.’s Extract-and-Attend
method dynamically extracts entity candidates, re-
ducing errors by up to 35% (Zeng et al., 2023).
Similarly, Lee et al. (Lee et al., 2021) employ NER
post-processing to refine translation outputs, an
approach we adapt statically via fine-tuning. Our
system enhances entity translation by leveraging
Wikidata to ensure contextual accuracy across lan-
guages.

Cultural adaptation is a crucial aspect of EA-MT.
Challenges such as preserving culturally signifi-
cant titles (e.g., Breaking Bad) align with our focus
on entities like Águila de San Juan (Vishwakarma,
2023). Wang et al. (Wang et al., 2024) highlight
the issue of cultural dominance in LLMs, which
we mitigate through the integration of multilingual
data in Wikidata. Named Entity Recognition (NER)
plays a foundational role in this effort, with surveys
like Li et al. (Li et al., 2022) guiding our enrich-
ment strategy.

Evaluation remains a significant challenge in EA-
MT. Traditional metrics like BLEU fail to capture
entity accuracy, leading to the adoption of M-ETA,
which reflects the limitations of our static approach.
Jung et al. (Jung et al., 2023) propose fine-grained
error analysis for deeper quality assessment. This
approach could further refine our evaluation.

Our work aims to address existing gaps in EA-
MT by incorporating structured knowledge bases
and static entity enrichment, enhancing translation
accuracy and cultural relevance.

3 System Description

Our EA-MT system enhances English-to-Spanish
entity translation through a three-stage process tai-
lored for scalability and precision in SemEval-2025
Task 2. As detailed below, our methodology adapts
a static approach using MarianMT and Wikidata,
explicitly discarding dynamic alternatives due to
resource constraints.

3.1 Data Preprocessing

We preprocessed the EA-MT dataset to remove
noise and standardize text, ensuring semantic focus.
It involved (1) removing emojis, URLs, mentions
(e.g., @username), and hashtags (e.g., #tag); (2)
eliminating non-standard special characters (retain-
ing ., !, ?); and (3) replacing accented characters in
general text (e.g., "Á" to "A") while preserving en-
tity names with accents to maintain integrity (e.g.,
"Águila" unchanged). We preserved the original
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case to avoid obscuring entity boundaries (Jurafsky
and Martin, 2025). Accent replacement in non-
entity text risked degrading contextual translation
(Naveen and Trojovský, 2024), but entity preser-
vation ensured outputs like "Águila de San Juan"
remained accurate.

3.2 Wikidata Enrichment
To address entity data scarcity, we enriched train-
ing with 240,432 Wikidata pairs across cate-
gories like musical works (Q2188189, 3766 la-
bels; Q105543609, 70176 labels), foods (Q2095,
2575 labels; Q25403900, 445 labels), plants
(Q756, 15037 labels), books (Q571, 2396 la-
bels), book series (Q1667921, 750 labels), fic-
tional entities (Q14897293, 17865 labels), land-
marks (Q570116, 6157 labels; Q2319498, 620
labels), movies (Q11424, 67293 labels), places
of worship (Q24398318, 12275 labels), natural
places (Q1286517, 18387 labels), and TV series
(Q5398426, 16282 labels). These pairs, extracted
via Wikidata API queries, enhanced coverage for
familiar entities like "Águila de San Juan," though
rare entity representation remained limited.

While our enrichment improved precision for
frequent entities, the static nature of this approach
limits its effectiveness for rare or emerging en-
tities. A more curated version of Wikidata, fo-
cusing on task-specific entities, could further en-
hance M-ETA scores, though the inherent limi-
tation of static systems’ incapability to adapt to
new or context-specific entities absent from pre-
enriched data would persist, underscoring the need
for dynamic retrieval methods.

3.3 MarianMT Fine-Tuning
We selected MarianMT
(Helsinki-NLP/opus-mt-en-es) for its effi-
ciency and suitability for English-to-Spanish
translation. Unlike larger models like NLLB-200
and M2M-100, which are designed for broad
multilingual coverage and require significantly
more computational resources, MarianMT offers
a balanced trade-off between performance and
resource efficiency. Given our hardware constraints
(NVIDIA RTX 3050 GPU, 4GB), fine-tuning a
larger model would have been impractical.

While NLLB-200 and M2M-100 may outper-
form in general multilingual translation, their ad-
vantage in entity-specific tasks remains uncertain,
particularly in combination with our entity en-
richment strategy. We fine-tuned MarianMT on

our dataset using a learning rate of 3 × 10−5, a
batch size of 4 with gradient accumulation, and
four epochs, optimizing with AdamW (β1 = 0.9,
β2 = 0.999) (Yang et al., 2020). With more signif-
icant computational resources, increasing the num-
ber of epochs could further improve entity transla-
tion accuracy. Hardware limitations dictated this
static approach, as dynamic LLM-based methods,
such as recovery-augmented generation (RAG), re-
quired more VRAM, impractical for our setup. See
Appendix 6 (Table 4) for a comparison of the EA-
MT approaches considered.

Additionally, we explicitly discarded dy-
namic LLM-based approaches, such as retrieval-
augmented generation (RAG), due to their high
computational demands. Instead, we prioritized a
static, resource-efficient solution better suited to
our constraints. See Appendix 6 (Table 4) for a
comparison of EA-MT approaches considered.

3.4 Prediction Generation
Predictions used the fine-tuned MarianMT stati-
cally, applying identical preprocessing steps. We
formatted outputs as JSONL per SemEval require-
ments. Unlike dynamic LLM-based systems (Yuk-
sel et al., 2025), our approach prioritized efficiency
over adaptability.

4 Results and Analysis

We assess performance using SemEval-2025 Task 2
metrics: COMET (general quality), M-ETA (entity
accuracy), and Overall Score:

Overall Score = 2× COMET × M-ETA
COMET + M-ETA

All scores range from 0 to 100.

4.1 Performance Metrics
Our system achieved a COMET of 87.09, M-ETA
of 24.62, and an Overall Score of 38.38, ranking
34th out of 34 systems. The high COMET reflects
fluency, but the low M-ETA indicates struggles
with rare entities (Naveen and Trojovský, 2024).

Metric Validation Test

COMET 87.24 87.09
M-ETA 27.74 24.62
Overall Score 45.12 38.38

Table 1: Validation vs. test metrics.
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Figure 1: Pipeline diagram of the EA-MT system, illustrating data preprocessing, Wikidata enrichment, MarianMT
fine-tuning, and prediction generation.

4.2 Comparison with Top Systems
We now compare our system’s performance against
top-performing models in the SemEval-2025 Task
2 leaderboard across Overall, M-ETA, and COMET
metrics. Leading systems, such as Qwen2.5-
Max (Overall: 92.63), Llama-3.3-70B-Instruct
+ DeepSeek-R1 (M-ETA: 90.50), and GPT-4o
(COMET: 95.31), leverage large-scale LLMs, sig-
nificantly outperforming our static MarianMT-
based approach. Table 2 summarizes these results.

System Overall M-ETA COMET

GPT-4o 92.42 89.88 95.31
Qwen2.5-Max 92.63 90.26 95.09
Qwen2.5-72B 92.54 90.13 95.09
Phi-4 92.50 90.09 95.04
Llama-3.3-70B-Instruct 91.72 88.42 95.28
Qwen2.5-32B 91.72 88.42 92.77
Llama-3.3-70B-Instruct + DeepSeek-R1 92.17 90.50 93.91
Ours 38.38 24.62 87.09

Table 2: Comparison of our system with top-performing
systems in SemEval-2025 Task 2 across Overall, M-
ETA, and COMET metrics

The top Overall scores, led by Qwen2.5-Max
at 92.63, reflect a balanced performance in flu-
ency and entity accuracy, far surpassing our 38.38.
In M-ETA, systems like Llama-3.3-70B-Instruct +
DeepSeek-R1 (90.50) and Qwen2.5-Max (90.26)
demonstrate exceptional entity precision, while
our 24.62 highlights a significant gap in handling
named entities. For COMET, GPT-4o (95.31) and
Llama-3.3-70B-Instruct (95.28) set the benchmark

for fluency. Yet, our 87.09 remains competitive,
indicating that our system’s strength lies in general
translation quality rather than entity-specific accu-
racy. These leading systems utilize large language
models (LLMs) with retrieval-augmented genera-
tion (RAG) techniques, enabling them to access
and incorporate external knowledge during transla-
tion dynamically. This dynamic approach allows
models to handle a range of entities, including rare
or domain-specific ones, by retrieving relevant in-
formation in real time. In contrast, our reliance
on static Wikidata enrichment, while effective for
familiar entities, fails to adapt to new or less fre-
quent entities, explaining our low M-ETA score.
It underscores the advantage of dynamic methods,
as discussed in recent work on RAG in machine
translation, such as Yuksel et al. (2025) (Yuksel
et al., 2025).

4.3 Qualitative Analysis
The M-ETA metric, an exact-match evaluation for
named entity translation accuracy, considers a trans-
lation correct only if it precisely matches the ref-
erence, offering no partial credit for approximate
matches. This strict standard penalizes any devi-
ation, be it a mistranslation, typographical error,
or cultural misinterpretation. Our system’s low
M-ETA score of 24.62 indicates that many named
entities were not translated accurately under this
metric, reflecting challenges with rare entities and
context-specific adaptations.
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Successes included "Eagle of St. John" as
"Águila de San Juan," showcasing Wikidata’s
strength with well-documented entities. How-
ever, frequent failures reveal cultural and contex-
tual deficits (Saadany et al., 2024). Examples in-
clude "Breaking Bad," which was mistranslated
as "Rompiendo Malo" instead of retaining its title,
"Star Wars" as "Guerras Estelares" rather than "La
Guerra de las Galaxias," and "Empire State Build-
ing" as "Edificio del Estado del Imperio" instead
of preserving its name. These errors highlight limi-
tations in handling culturally significant titles and
landmarks, penalized heavily by M-ETA’s exact
match requirement. See Appendix 6 (Table 5) for
a detailed list of translation examples with error
types.

5 Conclusion

Despite Neural Machine Translation (NMT) ad-
vancements, our results highlight fundamental
shortcomings in entity-aware translation when rely-
ing solely on static knowledge sources. While our
system achieved a COMET score of 87.09, demon-
strating strong fluency, its M-ETA score of 24.62
exposed severe deficiencies in entity precision, ul-
timately leading to an Overall Score of 38.38, the
lowest among competing systems. These results
confirm that a static enrichment approach, even
when incorporating a large-scale structured knowl-
edge base like Wikidata, is insufficient for han-
dling the complexity of named entity translation.
Static methods offer scalability and efficiency in
low-resource settings (e.g., 4GB GPU) compared
to RAG’s demands, but the COMET-M-ETA gap
shows fluency prioritization over precision, mis-
aligned with EA-MT goals.

One of the main issues observed was the rigid
dependency on Wikidata, which, while useful for
well-documented entities, failed to capture emerg-
ing terms, domain-specific references, and sub-
tle cultural nuances. The absence of real-time
retrieval mechanisms also resulted in translation
errors for ambiguous or context-sensitive entities.
Compared to retrieval-augmented systems (Yuksel
et al., 2025), our approach could not dynamically
adjust translations, leading to cases where named
entities were either mistranslated or omitted en-
tirely. Exploring more curated or updated versions
of structured knowledge bases like Wikidata could
enhance entity translation accuracy. However, the
fundamental limitation of static approaches’ in-

ability to adapt to new or context-specific entities
would remain, reinforcing the need for dynamic
retrieval methods.

Another critical limitation was our preprocessing
pipeline, which, although effective in text normal-
ization, introduced unintended side effects. For ex-
ample, the replacement of accented characters (e.g.,
"Águila" to "Aguila") compromised entity integrity,
further reducing translation accuracy (Naveen and
Trojovský, 2024). Moreover, our constrained hard-
ware (NVIDIA RTX 3050, 4GB) restricted fine-
tuning to only four epochs, potentially limiting the
model’s ability to leverage the enriched dataset
effectively (Yang et al., 2020). Traditional ap-
proaches, such as rule-based systems and statis-
tical machine translation (e.g., Moses), suffer from
similar limitations, poor scalability, lack of seman-
tic understanding, and inadequate entity handling,
rendering them obsolete for modern EA-MT tasks.

Our metrics provide clear evidence for the need
for alternative solutions. The stark contrast be-
tween our M-ETA score 24.62 and the top systems’
scores (e.g., 90.50 for Llama-3.3-70B-Instruct +
DeepSeek-R1) indicates a significant gap in entity
translation accuracy. In contrast, our competitive
COMET score (87.09 vs. 95.31 for GPT-4o) sug-
gests fluency is less of a bottleneck. This disparity
underscores the inadequacy of static methods for
entity-specific tasks. It justifies the adoption of dy-
namic, retrieval-augmented approaches capable of
addressing rare and context-dependent entities. A
hybrid approach, like lightweight RAG caching fre-
quent entities, could balance efficiency and adapt-
ability.

5.1 Limitations

Our approach revealed several constraints affecting
performance:

1. Over-reliance on Wikidata: While struc-
tured knowledge bases offer valuable entity
translations, their static nature prevents adap-
tation to emerging or domain-specific terms,
reducing overall system robustness (Li et al.,
2022).

2. Lack of Contextual Adaptation: Unlike
retrieval-augmented LLM-based approaches,
our system could not adjust entity translations
dynamically, leading to rigid and often incor-
rect outputs (Yuksel et al., 2025).
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3. Preprocessing-induced Errors: The aggres-
sive normalization of text removed diacritics,
impacting the accuracy of culturally signifi-
cant named entities and altering their intended
meaning (Naveen and Trojovský, 2024).

4. Computational Constraints: Limited hard-
ware resources severely restricted the fine-
tuning depth, potentially capping the model’s
ability to leverage the enriched dataset (Yang
et al., 2020) fully.

5.2 Future Work
Our results strongly indicate that static knowl-
edge bases alone are insufficient for robust entity
translation. Future work must focus on integrat-
ing retrieval-augmented generation (RAG) (Yuksel
et al., 2025) and adaptive entity-linking techniques
to incorporate contextual information dynamically.
Additionally, improving preprocessing strategies to
preserve linguistic integrity (Jurafsky and Martin,
2025) and increasing computational resources to
enable deeper fine-tuning (Yang et al., 2020) will
be critical in overcoming current limitations. Fi-
nally, exploring meta-learning (Deb et al., 2022)
and heuristic reasoning (Aoki et al., 2024) could
enhance adaptability, reducing errors in domain-
specific and low-resource entity translations.
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Appendix

This appendix provides supplementary tables and
details about the VerbaNexAI system for SemEval-
2025 Task 2, which we removed from the main
paper to comply with the 5-page limit.

A. Comparison of EA-MT Approaches

The following table, originally in Section 3, sum-
marizes the primary EA-MT approaches consid-
ered in our methodology:

Our static approach leverages MarianMT and
Wikidata for scalability under resource constraints.
At the same time, we discarded dynamic RAG sys-
tems due to hardware limitations. Traditional SMT
methods, like Moses, were not considered due to
their obsolescence and poor performance on entity
translation tasks.

B. Translation Examples with Error Types
The following table, originally in Section 4, pro-
vides examples of entity translations with identified
error types:

These examples illustrate both successes (e.g.,
"Eagle of St. John") and frequent failures (e.g.,
"Breaking Bad"), highlighting limitations in cul-
tural adaptation and entity precision.

C. Hardware Constraints
Our experiments were conducted on an NVIDIA
RTX 3050 GPU with 4GB VRAM, which limited
batch sizes and fine-tuned epochs. This constraint
likely impacted our ability to fully leverage the
enriched dataset, suggesting that future work with
higher-capacity hardware could yield improved re-
sults.
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Approach Advantages Limitations Adaptation/Discard

Static (Ours) Efficient, scalable Low M-ETA, no adaptability Adapted with MarianMT/Wikidata
Dynamic (RAG) High M-ETA, adaptable Resource-intensive Discarded due to hardware
Traditional (SMT) Simple alignment Poor entity accuracy Discarded, outdated

Table 3: Comparison of relevant EA-MT approaches, highlighting adaptation or discard decisions in our system.

Approach Advantages Limitations Adaptation/Discard

Static (Ours) Efficient, scalable Low M-ETA, no adaptability Adapted with MarianMT/Wikidata
Dynamic (RAG) High M-ETA, adaptable Resource-intensive Discarded due to hardware
Traditional (SMT) Simple alignment Poor entity accuracy Discarded, outdated

Table 4: Comparison of relevant EA-MT approaches, highlighting adaptation or discard decisions in our system.

Entity Correct Translation Our Output Error Type

Eagle of St. John Águila de San Juan Águila de San Juan Correct
Breaking Bad Breaking Bad Rompiendo Malo Mistranslation
The Room La Habitación La Sala Cultural Error
Darth Vader Darth Vader Dar Vader Typographical
Star Wars La guerra de las galaxias Guerras Estelares Mistranslation
Sushi sushi Sushí Typographical
Empire State Building Empire State Building Edificio del Estado del Imperio Mistranslation

Table 5: Translation examples with error types.

1262


