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Abstract

For SemEval 2025 Task 8, addressing tabular
data question answering, we introduce a novel
few-shot prompting system that guides large
language models (LLMs) to generate Python
code representing the reasoning process. Our
system automatically creates a library of exem-
plar code snippets from training data, which are
then used for few-shot prompting. Crucially,
we incorporate a selection prompt to choose
the best candidate code from multiple LLM-
generated options, improving robustness and
accuracy. Our system achieved competitive re-
sults, ranking 17th in the Open Model track and
25th overall. Ablation studies demonstrate the
effectiveness of our exemplar generation and
code selection strategies. We conclude with
a discussion of limitations and promising av-
enues for future research.

1 Introduction

Recent rapid advancement of Large Language Mod-
els (LLMs) has innovated a wide range of natural
language processing (NLP) tasks Zhao et al. (2023);
Hadi et al. (2023), as the extended context size
enables LLMs to handle much more complicated
tasks. Yet, question answering on tabular data re-
quires more strategic approaches as even extended
context size cannot handle full size of large tables
effectively. SemEval 2025 Task 81 Os’es Grijalba
et al. (2025) deals with this problem by providing
the challenge for the recently developed DataBench
dataset. Through this dataset, SemEval 2025 Task
8 provides hundreds of questions and associated
tables written in English along with answers and
related information.

In this paper, we explain our approach to Se-
mEval 2025 Task 8 in detail. To provide LLMs
guides to steps to deduce the answer from the table,
we generated example python codes out of the pro-
vided questions and tables in the training data. With

1https://jorses.github.io/semeval/

these examples, we performed few-shot prompting
followed by a selection prompt to choose the most
proper code to answer the question among multiple
candidate codes.

We applied our optimal approach, identified
through extensive experimentation, to the competi-
tion test set. Our submitted system achieved a rank
of 17th in the Open Model track and 25th overall
on the SemEval 2025 Task 8 leaderboard. Ablation
studies were conducted to evaluate the contribu-
tion of each system component. Further analysis of
our example generation method revealed a need for
improvement in handling boolean-type questions.
Finally, we propose several directions for future
research to enhance system performance.

2 Background

As in many other NLP tasks, question answering
using LLMs has shown notable progress recently
thanks to a variety of approaches including such
as chain-of-thought prompting Wang et al. (2023),
retrieval-augmented-generation Fan et al. (2024),
knowledge distillation Sutanto and Santoso (2024),
and hybrid approaches Daull et al. (2023).

Among different kinds of question answering
tasks, question answering on tabular data is distin-
guished from other question answering tasks by the
fact that its provided tabular data are structured and
can be arbitrarily long. To deal with these problems,
most approaches rely on non-natural languages
such as SQL or Python to represent logical steps
deducing a subtable or an answer from the given ta-
ble Jin et al. (2022); Zhang et al. (2023); Cao et al.
(2023); Kong et al. (2024); Zhang et al. (2024);
Lu et al. (2024); Zhu et al. (2024). To utilize the
most relevant information from the table, many sys-
tems adopt mechanisms to select relevant subtables
Zhang et al. (2023); Kong et al. (2024); Sun et al.
(2016). As there are multiple approaches with dif-
ferent advantages, selection agents that choose the

1241



best approach among multiple candidates are often
used to increase the performance of the system Gao
et al. (2024); Pourreza et al. (2024).

2.1 Task description

SemEval 2025 Task 8 aims to develop a question
answering system for tabular data. The challenge
provides multiple datasets and questions about
these datasets where each question only deals with
a single dataset at a time. The challenge is com-
posed of two subtasks; the subtask 1 can provide
datasets of any size and the subtask 2 provides
tables of maximum 20 rows each.

2.1.1 Dataset
SemEval 2025 Task 8 uses the DataBench dataset
Grijalba et al. (2024) for development and evalua-
tion. DataBench datset used for this challenge is
composed of 3 splits: train, dev, and test.

• Train split: 988 questions over 49 tables

• Dev split: 320 questions over 16 tables

• Test split: 522 questions over 15 tables. Par-
ticipants submit the results on this split.

There is no overlap of tables between different
splits. Each question belongs to one of 5 types:
boolean, number, list of number, category, list of
category. In the train split and the dev split, this
type information and the columns used to answer
each question are included. For the test split, only
the question and the table are provided.

2.1.2 Evaluation Metric
The evaluation metric for SemEval 2025 Task 8
is the accuracy of the result, which is defined as
the ratio of the results matching with answers over
the total number of questions. When determining
whether a result matches with the answer, the order
within the list is ignored. For numeric results, each
number is rounded up to the second decimal.

3 System overview

Our approach is consisted of three steps. First,
we generate example python codes using zero-shot
prompting on the LLM with the training data. Sec-
ond, we do few-shot prompting on the LLM using
the example codes generated in the first step to gen-
erate candidate python codes for the input question.
Finally, we run a selection prompt to select the
most suitable code to answer the given question.

Figure 1: Overview of our few-shot prompting system.

By executing this selected code, we obtain the final
result for the given question. This entire process is
summarized in Fig. 1.

3.1 Example generation with LLM
To guide the LLM to properly answer the question
based on the given training data, the most straight-
forward way is to utilize in-context learning via
few-shot prompts. While one may try a few-shot
prompt composed of the question and answer pairs
given in the training data, such prompt lacks any de-
tailed explanation how one can reach to the result.
Moreover, it may be almost impossible to present
all the information in the table if the table size is
too large compared to the context size of the LLM.
Therefore, one should use example logical steps
to guide LLM to replicate its own logical steps to
deduce the result from the table. In our approach,
we used python codes as our logical steps.

To turn the entire training split into example
codes to be used in few-shot prompting, we first
performed zero-shot prompting on the training data
along with a simplified table. The zero-shot prompt
we used can be found in Appendix B. For the sim-
plified table, we randomly sampled 10 rows from
the original table and presented them as in Ap-
pendix A. Our table presentation is inspired by
Zhang et al. (2023). Once the python code is
generated, we executed it and compare the exe-
cution result with the given answer of the training
data, then accepted it as a valid example if the re-
sult matches with the answer. To collect as much
examples as possible, we repeated the zero-shot
prompting 10 times per each different temperature
T = 0.2, 0.3, 0.4, 0.5 and aggregated all the valid
examples. As a result, we collected the example set
of 839 examples out of 988 questions in the train-
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Figure 2: Example generation process.

ing data. The entire example generation process is
illustrated in Fig. 2.

Figure 3: Few-shot prompt for candidate code genera-
tion.

3.2 Few-shot prompting
Once example python codes are generated, we per-
form few-shot prompting on the LLM to generate
candidate python codes to answer the input ques-
tions. For that, we sample a few examples from
the example set for each prompt. To choose the
closest examples to the given question, we eval-
uate 1536-dimensional embedding vectors of the
given question and all questions in the example set
using gte-Qwen2-1.5B-instruct model2. Then
we select examples based on the cosine similarity
between these embedding vectors.

For succinct presentation of tables, we filtered
the columns of the given table so that only columns
relevant to the given input question can be pre-
sented. For this process, we utilized another few-
shot prompts, inspired by Talaei et al. (2024), to
select relevant columns for the given question. De-
tails of this process is described in Appendix D.

With the chosen examples and the input data, we
created few-shot prompt as presented in Appendix
C. The over process is summarized in Fig. 3.

3.3 Selection prompt
Although we guide the LLM with our few-shot
prompt, there is always some fluctuation of gener-

2https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-
instruct

ated results for the stochastic nature of the LLM.
To regularize this, we generate multiple candidate
python codes for each input question using the
prompts in Section 3.2, and run another prompt to
select which candidate code is most appropriate to
answer the given question. Our selection prompt
is inspired by Gao et al. (2024), and a template is
presented in Appendix E.

4 Experimental setup

4.1 Hardware

All of our text generation and embedding evalu-
ation on LLMs were performed on a 4× Quadra
RTX 8000 (48GB VRAM) card.

4.2 LLMs used for prompting

Qwen2.5-72B-Instruct model3 was used to run
the zero-shot prompts for example generation.
Qwen2.5-coder-32B-Instruct model4 was used
to run the few-shot prompts for candidate code
generation. Qwen2.5-coder-7B model5 was used
to run the column filtering prompts for the input
questions and the selection prompts. All prompts
were run with temperature T = 0 unless otherwise
noted.

5 Results

We present the results of our experiments in Table
1. All experiments were performed at temperature
T = 0. Here we report the average performance of
10 repeated experiments. For the challenge compe-
tition, we submitted the results from Exp 8.

6 Discussions

To see how effective each component of our ap-
proach is, we may compare different experiment
results listed in Table 1.

• Comparison of Exp 1 ∼ Exp 3 shows that
Qwen2.5-coder-32B-Instruct performed
the best in our setting. This code-specific
model outperformed a generic-purposed
model with more parameters.

• Comparison of Exp 2 and Exp 4 shows that
the table presentation improves the accuracy
by the margion of 12.5 %p.

3https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
4https://huggingface.co/Qwen/Qwen2.5-Coder-32B-

Instruct
5https://huggingface.co/Qwen/Qwen2.5-Coder-7B
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Exp # Experiment Model size Split Accuracy (%)

1 Zero-shot 7B dev 61.0
2 Zero-shot 32B dev 78.8
3 Zero-shot 72B dev 77.5
4 Zero-shot, without table presentation 32B dev 66.3
5 Few-shot (nex = 5) 32B dev 81.9
6 Few-shot (nex = 5), without column filtering 32B dev 81.2
7 Few-shot (nex = 5) with selection prompt (ncand = 3) 32B dev 82.1

8 Few-shot (nex = 5) with selection prompt (ncand = 3) 32B test 78.35

Table 1: Experiment results. All accuracies are average value of 10 repeated experiments except Exp
8. Model size 7B / 32B / 72B indicates the model Qwen2.5-coder-7B / Qwen2.5-coder-32B-Instruct /
Qwen2.5-72B-Instruct, respectively.

• Comparison of Exp 2 and Exp 6 indicates
that the few-shot approach is better than the
zero-shot approach by the accuracy margin of
2.4 %p.

• Comparison of Exp 5 and Exp 6 shows that
column filtering increases the accuracy by the
margin of 0.7 %p.

• Comparison of Exp 5 and Exp 7 implies that
selection prompt can slightly boost the accu-
racy by the margin of 0.2 %p.

nex Accuracy (%)

3 81.7
4 80.9
5 81.9
6 81.6

Table 2: Accuracy of the system for different nex. All
other conditions of the experiment is identical to Exp 4.

ncand Accuracy (%)

2 81.4
3 82.1
4 81.6
5 82.0
6 81.8
7 81.9

Table 3: Accuracy of the system for different ncand. All
other conditions of the experiment is identical to Exp 5.

Moreover, Table 2 and Table 3 shows how the ac-
curacy of the system changes as the number of few-
shot examples (nex) and the number of candidates

for the selection prompt (ncand) change. Based
on these experiments, we selected nex = 5 and
ncand = 3 for our best performing system.

Question type Exp 2 Exp 7

Boolean 85.2 85.3
Category 86.7 90.6

Category, list 67.2 71.4
Number 80.6 84.2

Number, list 74.2 78.6

Table 4: Accuracy (%) of each question type

To see how our few-shot prompting approach
performs on each question type, we compared the
accuracies of each question type on Exp 2 and Exp
7. This comparison shows that our approach out-
performs the baseline zero-shot approach by the ac-
curacy margin of 3.6 ∼ 4.4%p in all other question
types except the boolean type. For the boolean type,
our approach shows similar performance (accuracy
margin of 0.1%p) with the baseline approach. We
believe this behavior is related to how we generate
and collect examples for the few-shot prompts. In
cases of numerical and text fields, it is very rare to
produce the right answer from the example code
with wrong logic. However, example codes for the
boolean type intrinsically has the danger of having
wrong logic while giving the right answer as there
are only two possible outcomes (true of false) for
this type.

7 Conclusion

We presented a novel few-shot prompting sys-
tem for tabular data question answering in Se-
mEval 2025 Task 8. Our approach leverages LLM-
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generated Python code as reasoning guides and
incorporates a selection prompt to enhance output
quality. This system achieved a 17th-place ranking
in the Open Model track and 25th overall. Our
analysis highlighted the contributions of individ-
ual components and identified key areas for future
research, particularly in handling boolean queries.

Limitations

As discussed in Section 6, our method for the gen-
eration and collection of example codes shows lim-
ited performance on boolean-type questions, and
improving this limitation would be an interesting
subject for the future research. While our approach
entirely relied on the python codes, many other ap-
proaches in the literature uses SQL as the means
to convey the logic of question answering for the
tabular data. To utilize the full capacity of both
approaches, one may combine python codes and
SQL queries in a single system for better perfor-
mance. It is also noteworthy that our selection
prompt is the simplest zero-shot prompt. There-
fore, there is some room to improve this selection
process by providing examples, introducing some
logical reasoning for selection, or fine-tuning with
synthesized training data.
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A Table presentation

In our prompts, we presented sampled tables sev-
eral times. To demonstrate how we presented them,
a sample m-row, n-column table is presented in
Prompt 1. Note that any field over 27 characters
are truncated up to first 27 characters and followed
by "...". Also, any NaN field is replaced to NULL.

Input table (df):
[HEAD]: col_1 | ... | col_n
---
[ROW] 1: field_1_1 | ... | field_1_n
...
[ROW] m: field_m_1 | ... | field_m_n

Prompt 1: Table presentation

B Zero-shot prompt template

import pandas as pd
import numpy as np

"""
For the following input table, write a function

to answer the question: (question)
(table presentation)
"""

def answer ( df ) -> (question type) :
"""
Returns: (question)
"""
df.columns = [(list of columns of the table)]

Prompt 2: Zero-shot prompt for code generation. Note
that "-> (question type)" part is skipped if question type
is not provided.

C Few-shot prompt template

import pandas as pd
import numpy as np

(zero-shot prompt from the first example)

(generated code from the first example)

...

(zero-shot prompt from the last example)
(generated code from the last example)

(zero-shot prompt from the input question, table)

Prompt 3: Few-shot prompt for code generation. Note
that all zero-shot prompts in this template skip the lines
importing packages. For the brevity of the example
codes, comments added in the same line of actual code
are omitted from the generated codes of examples.

D Column filtering

To filter the relevant columns for the input question
from the input table, we used the few-shot prompts
(Prompt 4) where the randomly sampled training
data were used as examples. We set the number of
examples to 6. We utilized the fact that the training
data contain the information on the columns used
to answer each question.

### You are a detail-oriented data scientist
tasked with selecting relevant columns from
a given database to answer the given
question.

Database: (database name for table 1)
Columns: [(list of columns of table 1)]
Question: (question 1)
Relevant columns: [

(used columns to answer question 1)]

...

Database: (database name for table 6)
Columns: [(list of columns of table 6)]
Question: (question 6)
Relevant columns: [

(used columns to answer question 6)]

Database: (database name for input table)
Columns: [(list of columns of input table)]
Question: (input question)
Relevant columns:

Prompt 4: Few-shot prompt for column selection.

To regularize the fluctuating responses from the
LLM and the bias of randomly sampled examples,
we repeated the experiments 20 times (10 times
at temperature 0.0 and 10 times at temperature
0.2) and aggregated all columns selected in the
responses.

For column filtering of example data, we directly
extracted column names from the generated codes
instead of running LLMs for column selection.

In both cases of the example data and the input
data, we manually added any column name that
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contains "id" or "name". We also added any column
name that contains any selected column or the other
way around.

E Selection prompt template

Prompt 5 is a template of our selection prompt in
the case of ncand = 4. Note that we have already
excluded examples that cannot be executed without
errors before feeding the examples for the prompt.

You are a data science expert.
For a given input table below and a question

regarding this table, there are 4 candidate
python functions to answer the question.

Your task is to compare these candidates and
select the correct and reasonable candidate
to answer the question.

(table presentation)

Question: (question)

[Candidate A]
import numpy as np
import pandas as pd
def candidate_A_solution(df: pd.DataFrame):
(python code for candidate 1)

...

[Candidate D]
import numpy as np
import pandas as pd
def candidate_D_solution(df: pd.DataFrame):
(python code for candidate 4)

Please output the selected candidate as "A" or "
B" or "C" or "D".

Selected canddiate:

Prompt 5: Selection prompt. In this template prompt,
number of candiates are set to 4.
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