Samsung Research Poland at SemEval-2025 Task 8:
LLM ensemble methods for QA over tabular data

Pawet Bujnowski*, Tomasz Dryjanski, Christian Goltz, Bartosz Swiderski,
Natalia Paszkiewicz, Barttomiej KuZma, Jacek Rutkowski, Jakub Stgpka, Mitosz Dudek,
Wojciech Siemiatkowski, Weronika Plichta, Bartlomiej Paziewski, Maciej Grabowski,
Katarzyna Beksa*, Zuzanna Bordzicka, Filip Ostrowski, Grzegorz Sochacki

Samsung Research Poland, Warsaw

*{p.bujnowski, k.beksa} @samsung.com

Abstract

Question answering using Large Language
Models has gained significant popularity in
both everyday communication and at the work-
place. However, certain tasks, such as query-
ing tables, still pose challenges for commercial
and open-source chatbots powered by advanced
deep learning models. Addressing these chal-
lenges requires specialized approaches.
During the SemEval-2025 Task 8 competition
focused on tabular data, our solution achieved
86.21% accuracy and took 2nd place out of
100 teams. In this paper we present ten meth-
ods that significantly improve the baseline so-
lution. Our code is available as open-source
software at the link: https://github.com/
samsungnlp/semeval2025-tasks.

1 Introduction

In recent years, Large Language Models (LLMs)
have made significant advancements, emerging as
powerful tools for extracting, interpreting, and gen-
erating insights from textual data. One of their
most significant applications is Question Answer-
ing (QA), where LLMs provide contextually rel-
evant responses to user queries. Although LLMs
excel in natural language understanding, they still
face challenges in processing and reasoning over
tabular data, particularly in understanding relation-
ships, identifying relevant columns, and answering
complex queries. With a substantial amount of real-
world data stored in tabular formats, the ability to
efficiently interpret and utilize structured informa-
tion seems more critical than ever.

1.1 Related methods

Tabular QA has gained significant attention in re-
cent years, with various approaches being explored.
Ye et al. (2024) generated pandas queries using only
column names. Giang et al. (2024) introduced The
Plan-of-SQL (POS), which enhances transparency
by breaking down questions into SQL sub-queries.

Zhang et al. (2023) proposed ReAcTable, which
iteratively generates intermediate tables (through
SQL or Python code) for step-by-step reasoning.
Abhyankar et al. (2024) presented H-STAR, which
extracts relevant table rows and columns before
reasoning, reducing noise but risking error propa-
gation if key columns are missed.

1.2 System overview

Our solution is based on an ensemble of carefully
prompted models built around generative LLMs,
where each model contributes to the prompt or
verifies the result. Each of these models votes on
the final answer. The system overview is illustrated
in Figure 1a.

Although the models differ significantly — which
is essential to leverage voting — they share a com-
mon structure composed of essential blocks, as
shown in Figure 1b. Key components include table
preprocessing and summary, identifying necessary
columns and answer types, question paraphrases,
few-shot learning and a correction loop.

2 Data

The training and test data we used was DataBench,
a benchmark dataset for tabular data (Osés Gri-
jalba et al., 2024; Os’es Grijalba et al., 2025). The
authors of DataBench emphasised their intention
to create a benchmark using “real-life” datasets,
which also resulted in challenges in interpretation.
The issues related to tables involved two areas
(please refer to Table 10 in Appendix D for ex-
amples): (1) Multiple types of values within a sin-
gle column (e.g. integers, floats and NaNs), (2)
Unclear column names — acronyms or shortened
words.

The analysis of the questions also showed that
some posed greater challenges than others, which
corresponded to the models’ performance. We iden-
tified the following groups of issues: (1) The need

1223

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1223-1232
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/samsungnlp/semeval2025-task8
https://github.com/samsungnlp/semeval2025-task8

a b
) [Dataset] [Question]) l Question l
| Dataset Preprocessing |
[Model1] eee [ModelN] ¥ 12 v
[Table Summary | [Necessary Columns | [Answer Type | *®* [Question Paraphrases |
1 I T T

((Model Answer] [Model Answer]
v v

[Voting |

¥
H Prompt Construction |

LLM

[Answer Quality/Code Execution Check

Model Answer

Figure 1: System overview. a) Top level overview of the system — multiple models are used to produce answers
further used for voting. b) Overview of elements building a single model.

for external knowledge not present in the table,
(2) The necessity to operate on substrings/altered
strings, (3) Ambiguity in question phrasing that
allows for multiple interpretations, (4) Multiple
possible answers that are equally correct, (5) The
need to convert units, such as weight or currency,
(6) Complex phrasing or language mistakes. See
examples in Table 11 in Appendix D.

3 Methods

3.1 Prompt Construction

During our experimentation we found that the fol-
lowing approaches significantly enhanced system
performance and proved effective on our tasks:
Data preprocessing: LLM’s performance declines
without preprocessing due to issues like emojis in
column names and table content interfering with
code execution. We discuss it in Section 3.2.
Table summary: As LLMs struggle with numeri-
cal data, and passing an entire table would require a
large context window, we included only a summary
of the table in the prompt (see Section 3.4.)
Detecting necessary columns: To simplify the
LLM tasks, we include only essential column
names in the prompt. The detection process is
detailed in Section 3.3.

Question paraphrases: We used question para-
phrases in the prompts (see details in Section 3.8).
Code output: Our LLMs return code for an-
swerers, as this solution works well with tables
(Osés Grijalba et al., 2024). See Section 3.7 for
details.

Output formatting: To ensure compatibility with
the validation function, we specify the required
answer formatting in the prompt for each ques-
tion. We determine the necessary formatting by
analyzing the questions with a separate model, as
described in Section 3.6.

Few-shot learning: To enhance prompting, for
some models, we used around 10 carefully selected
QA examples.

3.2 Data preprocessing

We encountered irregularities in column names
and issues when reading datasets with pandas
read_csv, particularly with advanced data types,
such as lists or dictionaries, which were incorrectly
converted to strings. We implemented a multi-stage
preprocessing pipeline involving:
(1) Column name cleanup: Removing emojis,
HTML tags, and excess whitespaces.
(2) Value Parsing: At first we attempted literal
evaluation. If this approach failed, we then parsed
values as JSON objects. Finally, we transformed
list-like values (those lacking quotation marks or
containing extra brackets) into valid lists.

These steps improved data parsing for effective
operations.

3.3 Detecting necessary columns

To reduce dimensionality, we used LLMs to iden-
tify the essential columns for specific questions.
Through several experiments and iterative prompt
engineering, we discovered that the best results
were achieved by breaking down the task of ex-
tracting the appropriate pandas query into three
steps:

1. Filtering the dataset with relevant columns
(time-based, categorical, or entity-related fil-
ters).

2. Sorting, ranking, or aggregating data based on
specific columns.

3. Returning the final answer by selecting the
necessary columns.

We provided the LLM with a list of dataset
columns, including data types and three random
example values for each.

1224

To ensure that the model returned only origi-
nal column names from the dataset, the prompt
restricted outputs to the provided column list. How-
ever, a postprocessing loop was added as a fallback,
where each proposed column was checked against
the input list. If a column was missing, preprocess-
ing steps like removing double spaces, trimming
underscores, and eliminating trailing whitespace
were applied, followed by a re-check.

Ultimately, Llama 3.3 achieved approximately
95% accuracy' on this task, where accuracy was
defined as the inclusion of ar least all required
columns for a given query.

3.4 Table summary

In order to provide LLM with additional knowledge
about a given table, we created a script that extracts
key information about the table, including column
names, variable types, empty values, and statistics
for numeric columns (standard deviation, mean,
min and max).

We also checked whether each row of the column
is unique and what are the most common values.
The generated report, passed to the prompt, helped
inform the LLM about the table’s structure and
potential difficulties in the analysis.

3.5 Raw data in markdown format

We found it valuable to include both the column
headers and a sample of row data in markdown
format. Typically, we fed the prompt with 20 rows.

3.6 Answer type prediction

To achieve balance between classification task met-
rics and GPU usage we utilized paraphrase-albert-
small-v2 ALBERT based model (Lan et al., 2019)
from the Sentence BERT model family (Reimers
and Gurevych, 2019). The model was first fine-
tuned on DataBench dataset. Given a query tok-
enized into subwords using ALBERT’s tokenizer,
the model then processed the text through the trans-
formers layer, allowing its neural network to clas-
sify the given query into one of the answer types.

ALBERT’ accuracy on the training set was ap-
proximately 96%, exceeding Llama 3.3’s perfor-
mance of 86% on the same task. See Appendix A
for more ALBERTs result details.

To further improve the classification, a voting
system incorporating Llama 3.3 and Qwen 2.5 was

'This result is nontrivial to calculate precisely, as the task
is inherently nondeterministic, and some questions may have
multiple valid solutions.

deployed. In case of ALBERT and Llama disagree-
ing, Qwen is inferenced. Thanks to this voting,
the overall accuracy of answer type prediction in-
creased to 98.28%.

3.7 Python pandas and SQL code generation

Our approach involved generating single, one-
line commands in pandas and SQL. At first, we
prompted LLM to generate pandas code answering
a question. We constructed our prompts iteratively,
as described in Section 3.9 It was specified that the
model should generate a plain command, without
any additional explanation. Tests revealed that for
some questions LLM continued to make similar
mistakes in pandas commands.

For stronger contribution to the ensemble of
models, we asked LLM to write SQL queries. The
prompt construction mirrored that written in pan-
das case, introducing as an add-on SQL schema of
a table. For generating and executing SQL code we
used SQLite and DuckDB.

3.8 Question paraphrasess

Using paraphrase generation as an auxiliary
method to increase accuracy is a common approach
applied in various Al systems, e.g.: text style trans-
fer (Bujnowski et al., 2020) or open domain ques-
tion answering (Siriwardhana et al., 2023). In our
experiments we generated paraphrases of questions
using Qwen 2.5 and used them in various answerer
models. Input to the model was a prompt with
a task to return 5 paraphrases of a question (in a
JSON format) and included the table headline and
a few examples (e.g. 3 rows) from the dataset in a
markdown format.

Question paraphrases seem to be beneficial for
LLMs in case of ambiguous questions, e.g. by
using column names directly or reformulating a
question in a less complex way.

3.9 Loops for code correction

We employed an LLM for QA tasks by generating
pandas or SQL code iteratively. The process in-
volved querying the LLM to propose a code snippet
within a loop, which was set to a maximum number
of iterations (max_iter). Each proposed code was
then executed to evaluate its response. If the code
was executed without errors, the response was ac-
cepted. If an error occurred, the information about
the error was fed back into the LLM as feedback,
allowing it to refine the next proposed code snip-
pet. This iterative process continued until either

1225

executable code was generated or the max_iter
limit was reached.

The next stage of our pipeline focused on
improving the generated queries. Common
errors included the absence of methods such
as .to_list(), .any(), .iloc[@], .item(),
.index.to_list() at the end of a query, prob-
lems with redundant or missing brackets, as well
as unnecessary artifacts of LLM’s responses such
as ~~ “python. The auxiliary LLM received input
that included a pre-generated pandas query along
with details about possible issues, and was tasked
with generating a corrected version of the query
based on this information.

3.10 Limiting inference tokens

Many questions demanded thorough understanding
of both the question and dataset, prompting us to
use reasoning models. We adhered to established
prompt structures and temperature recommenda-
tions (Guo et al., 2025). However, for ambigu-
ous or highyly dataset-specific questions, reasoning
models often generated excessively long thinking
processes without arriving at correct solutions. We
addressed this by implementing a token cap for the
thinking process, which forced the models to pro-
vide final answers after reaching a predetermined
token limit.

3.11 Ensemble models

To improve predictions we used ensemble mod-
els, selecting the best-performing ones based on
training set results. For each question we took an-
swers inferred by selected models and removed
these flagged as invalid. If there was a single an-
swer left, it was returned as the ensemble result.
Otherwise, we next applied simple majority vot-
ing. The vote was considered conclusive if more
than the half of the answers were consistent. If
not, we used Qwen 2.5 for arbitration. Its input in-
cluded: the question text, column names, inferred
necessary columns (Section 3.3), table summary
(Section 3.4), predicted answer type (Section 3.6),
and valid model results. Additionally, we assessed
the complexity of pandas queries where applicable,
based on factors such as the number of executable
functions in a query, occurrence of a custom func-
tion like 1ambda or . apply (), and presence of data
type conversions. For each criterion the query re-
ceived a penalty, which was then added up to the
final score and fed to the LLM to support voting.

4 Results

4.1 Experimental setup

Model name Model size
Llama-3-Instruct 70B
Llama-3.3 70B
Qwen-2.5-Instruct 72B
DeepSeek-R1-Distill-Qwen 32B
DeepSeek-R1-Distill-Llama 70B
DeepSeek-R1 671B

Table 1: LLMs: models used in experiments and for
final predictions, with their respective parameter counts.

We evaluated various LLMs and selected them
based on their high scores on coding and reason-
ing benchmarks (Dubey et al., 2024; Guo et al.,
2025; Yang et al., 2025). The specific models that
we used are detailed in Table 1. All models were
implemented in 4-bit quantized versions due to
hardware limitations, and executed on GPUs via
the llama.cpp interface (further details provided in
the Appendix in Table 7).

4.2 Results of separate and ensemble models

In Table 2 we present our results for single and
ensemble models for “FULL” task. Our top-
performing system achieved an accuracy of 86.21%
and consisted of 8 various models using combina-
tions of the methods outlined in Section 3.

In Table 8 in Appendix D we present examples
of the most challenging questions from the test
dataset, which none of our models with accuracy
over 80% could answer correctly. Additionally, the
Lite task results are shown in Appendix C.2.

4.3 Ablation studies for “FULL” task

To better understand how various methods pre-
sented in Section 3 impact the final results, we
conducted an ablation study using Qwen 2.5 model.
We changed the parameters of one model, starting
with the base methods and progressively adding
more sophisticated ones. While the choice of meth-
ods was somewhat arbitrary, calculating the full
permutation of methods was difficult. The results
for two types of code generation queries — Python
pandas and SQL — are shown in Table 3.

The baseline method consisted of a simple
prompt with a single code generation attempt. The
original pandas and SQL prompts used in the abla-
tion studies are presented in Appendix B. To this
simple prompt we added just three sentences (we

1226

Voting from models S10, S8, S9, S11, S7, S6, S4, S1. The winning model submitted to the competition
Voting from models S12, S10, S8, S9, S11. The better single model (S12) added after submission

Voting from models S12, S10, S8, S9, S11, S7, S6, S4, S1. Long list of models to vote from (9 models)
Voting from models S12, S10, S8, S9, S11, S7, S6, S4, S1. Only LLM voting, majority voting not used

Qwen 2.5; generation of pandas code using methods 3.1 — 3.9; shorter prompt

DeepSeek R1; generation of pandas code; 3.1 — 3.7, 3.9, 3.10 (inference limit: 3000 tokens)
Qwen 2.5; generation of pandas code using methods 3.1 — 3.4 and 3.6 — 3.9; shorter prompt

Llama 3.3; generation of pandas code using methods 3.1 — 3.9; shorter prompt

DeepSeek R1; generation of pandas code; 3.1 — 3.4, 3.6, 3.7, 3.10 (inference limit: 1200 tokens)

Experiment Accuracy Description

Voting 0.8621 (0.8736)

Voting 0.8602 (0.8716)

Voting 0.8563 (0.8678)

Voting 0.8506 (0.8621)
S12 0.8333 (0.8448) | Qwen 2.5; generation of pandas code using methods 3.1 —3.9
S11 0.8161 (0.8276) | Qwen 2.5; generation of SQL code using methods 3.1 — 3.9
S10 0.8161 (0.8276)
S9 0.8142 (0.8276) | Qwen 2.5; generation of SQLite code using methods 3.5, 3.8
S8 0.8123 (0.8238) | Llama 3.3; generation of pandas code using methods 3.1 —3.9
S7 0.8084 (0.8199)
S6 0.7950 (0.8065)
S5 0.7893 (0.8008) | Qwen 2.5; generation of pandas code using methods 3.3, 3.4, 3.6
S4 0.7874 (0.7989)
S3 0.7510 (0.7625) | Llama 3.3; generation of pandas code using methods 3.3, 3.4, 3.6
S2 0.7356 (0.7471)
S1 0.7299 (0.7395) | Qwen 2.5; generation of DuckDB code instead of pandas

Table 2: Performance of single models and their ensembles on the test set.
In brackets: results with the final evaluation function updated by the task organizers.

Methods of one model for FULL testset

Accuracy (pandas) Accuracy (SQL)

Simple prompt, 1 LLM request

Extended prompt, 1 LLM request

... +up to 3 LLM requests (3.9)

... +up to 10 LLM requests (3.9)

... + added 20 table rows in markdown (3.5)

.. + added table summary (3.4)

.. + answer type classifier (3.6)

... + necessary column detector (3.3)

.. + LLM-gen. 5 paraphrases of question (3.8)

.. + LLM-gen. 5 paraph. of question w/o column detector

0.4770 0.6743
0.6782 0.6897
0.6801 0.7050
0.6877 0.7088
0.7759 0.7682
0.7893 0.7510
0.8218 0.8199
0.8238 0.8046
0.8333 0.8218
0.8429 0.8314

Table 3: Ablation studies: the impact of methods on one-model results: Python pandas or SQL query generation.

call it “the complex prompt”), achieving a 20%
increase in the performance of the pandas code
model. Next, we increased the number of LLM in-
ferences, up to 3 or 10 when necessary (described
in Section 3.9), resulting in a performance gain of
between 1% and 1.9% (for 10 loops).

Two factors had the greatest impact on accuracy
in the later stages: (1) Adding the number of table
rows in markdown format (+8.8% for pandas and
+5.9% for SQL), (2) Including answer type predic-
tion (described in Section 3.6; +3.3% for pandas
and +6.9% for SQL).

The necessary columns selector, presented in
Section 3.3, slightly improved the pandas code re-
sults and worsened the SQL results.

Finally, using paraphrases (Section 3.8) im-
proved outcomes by +1% for SQL and 1.9% for
pandas (with the column selector removed).

Interestingly, both pandas and SQL models
reached similar maximum accuracy of 84.3% and
83.1% respectively, with larger differences when

applying various methods in the earlier stages.

5 Limitations

Our system was built and fine-tuned using the
DataBench dataset. Although it includes a diverse
set of tables and questions, our experiments were
conducted on a limited sample of real data. Addi-
tional research is necessary to determine how well
the proposed methods generalize to other domains.

6 Conclusion

Despite the availability of verified open-source
LLMs, answering questions over massive tabular
data is still a challenging task. Designing an ef-
fective prompt is undoubtedly a crucial method,
but can be difficult to control. Interestingly, sim-
ple feature and system engineering, combined with
common classifiers, continue to be valuable and
can significantly improve QA accuracy. Through
our experiments in the SemEval Task 8, we demon-
strated that using multiple models and smart voting

1227

can result in creating an effective, general-purpose
tabular QA system.

References

Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chan-
dan K. Reddy. 2024. H-star: Llm-driven hybrid
sql-text adaptive reasoning on tables. Preprint,
arXiv:2407.05952.

Pawel Bujnowski, Kseniia Ryzhova, Hyungtak Choi,
Katarzyna Witkowska, Jaroslaw Piersa, Tymoteusz
Krumbholc, and Katarzyna Beksa. 2020. An empirical
study on multi-task learning for text style transfer and
paraphrase generation. In Proceedings of the 28th
International Conference on Computational Linguis-
tics: Industry Track, pages 50-63, Online. Interna-
tional Committee on Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 516
others. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Giang, Nguyen, Ivan Brugere, Shubham Sharma, Sanjay
Kariyappa, Anh Nguyen, and Freddy Lecue. 2024.
Interpretable 1lm-based table question answering.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, and Radu Soricut Piyush Sharma.
2019. Albert: a lite bert for self-supervised learning
of language representations. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Jorge Os’es Grijalba, Luis Alfonso Ure na-L’opez,
Eugenio Mart’inez C’amara, and Jose Camacho-
Collados. 2025. SemEval-2025 task 8: Question
answering over tabular data. In Proceedings of the
19th International Workshop on Semantic Evalua-
tion (SemEval-2025), Vienna, Austria. Association
for Computational Linguistics.

Jorge Osés Grijalba, L. Alfonso Urefia-Lépez, Euge-
nio Martinez Camara, and Jose Camacho-Collados.
2024. Question answering over tabular data with
DataBench: A large-scale empirical evaluation of
LLMs. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 1347113488, Torino, Italia.
ELRA and ICCL.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Shamane Siriwardhana, Rivindu Weerasekera, Elliott
Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. 2023. Improving the domain
adaptation of retrieval augmented generation (RAG)
models for open domain question answering. Trans-
actions of the Association for Computational Linguis-
tics, 11:1-17.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Ji-
axi Yang, Jingren Zhou, Junyang Lin, Kai Dang, and
23 others. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Junyi Ye, Mengnan Du, and Guiling Wang. 2024.
Dataframe qa: A universal llm framework on
dataframe question answering without data exposure.
Preprint, arXiv:2401.15463.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2023.
Reactable: Enhancing react for table question answer-
ing.

1228

https://arxiv.org/abs/2407.05952
https://arxiv.org/abs/2407.05952
https://doi.org/10.18653/v1/2020.coling-industry.6
https://doi.org/10.18653/v1/2020.coling-industry.6
https://doi.org/10.18653/v1/2020.coling-industry.6
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arXiv.2412.12386
https://arxiv.org/pdf/1908.10084
https://arxiv.org/pdf/1908.10084
https://aclanthology.org/2024.lrec-main.1179/
https://aclanthology.org/2024.lrec-main.1179/
https://aclanthology.org/2024.lrec-main.1179/
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.1162/tacl_a_00530
https://doi.org/10.1162/tacl_a_00530
https://doi.org/10.1162/tacl_a_00530
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2401.15463
https://arxiv.org/abs/2401.15463
https://arxiv.org/abs/2310.00815
https://arxiv.org/abs/2310.00815

A Answer type prediction - ALBERT
classifier results

Appendix A provides detailed performance metrics
for the classification model discussed in Section 3.6.

Accuracy 0.9618
F1 Score 0.9620
F1 Micro Score | 0.9618
F1 Macro Score | 0.9643

Table 4: ALBERT model metrics.

Table 4 presents the overall performance of the
ALBERT model, fine-tuned on the DataBench
dataset, evaluated using accuracy and F1 score.

Class Precision | Recall | Fl-score | Support

boolean 1.00 1.00 1.00 44
category 1.00 1.00 1.00 42
list[category] 0.85 0.96 0.90 48
list[number] 0.97 0.88 0.92 65
number 1.00 1.00 1.00 63
accuracy 0.96 262
macro avg 0.96 0.97 0.96 262
weighted avg 0.96 0.96 0.96 262

Table 5: ALBERT classes metrics.
Table 5 breaks down ALBERT’s classification

report for answer types, highlighting class-specific
strengths and weaknesses.

- 0.8

Normalized Confusion Matrix

boolean

-06

2
5
&
g
g
T
E
g
£
s
B

-04
I 02
0.0

Figure 2: ALBERT Confusion Matrix.

listinumber]

number

list{category]
Predicted

boolean category list{number] number

Figure 2 visualizes the correctness of predictions
made by the ALBERT model, pretrained on the
questions from the dev and train sets. The matrix
has been normalized to simplify analysis.

Table 6 compares the accuracy of ALBERT,
Llama 3.3 and Qwen 2.5 on the DataBench training
set.

Model Accuracy
ALBERT 0.9618
Llama 3.3 0.8624
Qwen 2.5 0.9067

Table 6: Classification accuracy.

B Ablations study — supplement

We present both a simple and a complex prompt
(the latter with added purple sentences) for pandas
and SQL generation output. The red color indicates
string variables that were added. Some sentences
contain syntax errors (such as the repetition of the
word “executable” in the last sentence). However,
this version worked better compared to the correct
version, where “executable” was used only once.

pandas_question_prompt = f"""{You are
given a pandas DataFrame named ’df’
which contains the following columns:
{all_column_names}. Based on this infor-
mation, generate a query in Python Pandas to
answer the question: {question_text}. Spec-
ify only the code needed to calculate the an-
swer using pandas (don’t write anything else
and do not write anything else. Also, return
the code as a string, without any characters
marking that this is code. Make sure it is an ex-
ecutable command, not a print statement. Be
attentive to units of measurement, currencies,
and notation systems, as data can be repre-
sented in various ways (using numbers, words,
abbreviations, or symbols). Verify if conver-
sion is needed. For a currency column it could
be better to transform values into floats (on
fly) and answer using it. Finally, make sure
the code you produce will return an answer
in the proper format — it should never be a
DataFrame, a dictionary or a series. Make
sure the answer is an executable one line exe-
cutable command!!!} """

1229

sql_question_prompt = f"""{You are given
a pandas DataFrame named ’df’ created
from famous dataset: {dataset_name} with
columns: {all_column_names}. In the next
step ’df’ DataFrame is converted to SQLite
table with schema: {schema}. Please gen-
erate a query in SQLite answering the ques-
tion: {question_text}. Specify only SQL
query. Don’t write anything else and do not
write any explanation! Also, return the query
as a string, without any characters marking
that this is code. Be attentive to units of mea-
surement, currencies, and notation systems, as
data can be represented in various ways (using
numbers, words, abbreviations, or symbols).
Verify if conversion is needed. For a currency
column it could be better to transform values
into floats (on fly) and answer using it. Query
should be as simple as possible, avoid nested
queries and joins whenever possible! """

C Results

C.1 The most challenging questions

Out of the 522 question in the test set, 21 turned out
to be the most difficult. It emerges that none of our
models with accuracy exceeding 80% managed to
return the correct answers to them. Table 8 depicts
5 examples from this set.

C.2 Results on the DataBench Lite QA
subtask

We applied the same methods as for the full version
subtask, and received results presented in Table 9.

D Data

Table 10 illustrates challenges in table interpreta-
tion based on columns (either their names or the
type of values). Table 11 provides examples of
potentially problematic questions, followed by a
short discussion of the applicable issue.

1230

Model name Parameters Quantization Hardware Source
Llama-3-Instruct 70B Q4_K M 2 x Quadro RTX 8000 bartowski
Llama-3.3 70B Q4_K M 2 x NVIDIA RTX A6000 unsloth
Qwen-2.5-Instruct 72B Q4_K M 2 x NVIDIA L20 bartowski
DeepSeek-R1-Distill-Qwen 32B Q4_K M NVIDIA L20 unsloth
DeepSeek-R1-Distill-Llama 70B Q4_K M 2 x Quadro RTX 8000 unsloth
DeepSeek-R1 671B Q4_ K M 8 x NVIDIA H100 unsloth

Table 7: LLMs: specifications of the models used, the hardware they were deployed on, and the source of quantized

weights.

Question

Comment

Challenge

What is the name of the animal involved in the
production of the most expensive coffee-related
product that we offer? Answer with a value
present in a cell of the database.

It was impossible to create a valid query to search for an
unspecified animal within the column values.

external knowl-
edge

How many suns were there in the title of Hossei-
nis’ novel? Answer with a number

The book title is A Thousand Splendid Suns. The number
in this cell is a string, but an integer is required as the
answer. An additional difficulty is that the models must
search for an unspecified number.

substring/altered
string

List the first (by number of appearance) 3 differ-
ent values in the highest tier of the dataset. If
there are less than 3 list as many as there are.

The expression “highest tier of the dataset” was con-
fusing for the models — the majority of them chose the
column named “Tier 4" instead of “Tier 1", as the former
name include the highest number.

ambiguity

Is Barbados considered overall more expensive
than the country ranked in the 10th place?

“Overall more expensive" refers to the most general
index, i.e. “Cost of Living Plus Rent Index". Meanwhile,
models took various approaches, e.g. they tried to sum
several random indices and compare these sums.

ambiguity

Is the average age of all lifting records in the
weight class of someone who weights 103000
grams above 40?

Converting weight units turned out to be an issue.

converting units

Table 8: Examples of questions to which none of the models answered correctly.

Experiment Accuracy Description

Voting 0.8563 (0.8659) | SL9, SL8, SL6, SLS, SL4, SL3

Voting 0.8506 (0.8602) | SL8, SL6, SLS5, SL4, SL3
SL9 0.8467 (0.8582) | Qwen 2.5; generation of pandas code using methods 3.1 — 3.9
SL8 0.8276 (0.8372) | SL7 with code correction (Section 3.9)
SL7 0.8218 (0.8314) | Qwen 2.5; generation of pandas code using methods 3.1 — 3.9; shorter prompt
SL6 0.8218 (0.8314) | Qwen 2.5; generation of SQL code instead of pandas
SL5 0.8161 (0.8257) | Qwen 2.5; generation of pandas code using methods 3.1 — 3.4 and 3.6 — 3.9; shorter prompt
SL4 0.7893 (0.7989) | SL1 with code correction (Section 3.9)
SL3 0.7778 (0.7874) | SL2 with code correction (Section 3.9)
SL2 0.6897 (0.6973) | Llama 3.3; generation of pandas code using methods 3.5 and few-shot learning
SL1 0.6743 (0.6839) | Llama 3.3; generation of pandas code using methods 3.5

Table 9: Performance of single models and their ensembles on the test set for the DataBench Lite QA subtask.

In brackets: results with the final evaluation function updated by the task organizers.

1231

https://huggingface.co/bartowski/Meta-Llama-3-70B-Instruct-GGUF
https://huggingface.co/unsloth/Llama-3.3-70B-Instruct-GGUF
https://huggingface.co/bartowski/Qwen2.5-72B-Instruct-GGUF
https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-32B-GGUF
https://huggingface.co/unsloth/DeepSeek-R1-Distill-Llama-70B-GGUF
https://huggingface.co/unsloth/DeepSeek-R1-GGUF

Dataset

Column name

Meaning

Question

Comment

List the 3 Parent values associ-
ated with the 3 highest number

The column contains both

speed.

average wind speed below 5?

069_Taxonomy | Parent The Parent ID number. of descendants (direct or other- integers (e.g“. 483 ,), and
. strings (e.g. “SPSHQ5”).
wise).
Indicates if a candidate | Do most students have some re- | The answer contains integers
072_Admissions | Research has any research experi- | search experience prior to the | (0 and 1), not strings (“yes”,
ence. application? “no”).
The score for Letter | What is the score for the recom- | In the column name, there is
e of Recommendation (a | mendation letters presented by | an abbreviation, whereas in
072_Admissions | LOR statement given by auni- | the student with the lowest En- | the question the term is para-
versity or college.). glish score? phrased.
. . Did any day with maximum ..
023_Climate racha The maximum wind wind spied a}l}mve 15 also have The column name is in Span-

ish.

022_Airbnbs

host_total_list-
ings_count

The number of proper-
ties owned by a host.

Are there any hosts who have
listed more than 10 properties?

The wording in the column
name differs from the phras-

ing used in the question.

Table 10: Examples of challenging columns. The first two concern value types and the following three illustrate

unclear column names.

077_Gestational

Challenge Dataset Question Comment

How many respondents have a high ST .
External knowl- 058_US school degree or less as their highest Knowledge about the US education system is
edge . necessary.

level of education?
External knowl- Are there more than 100 lifters in the | The model needs to understand that weight cat-

074_Lift weight class someone that weighs 82kg | egories are fixed weight ranges and then find

edge . .

would compete in? the closest weight category.
Supstnng/altered 018_Staff Were there any employees hired in 20197 Thc?, content of the applicable cell is a date from
string which the year must be extracted.

. How much stock (in number of books) . .. -
Substrmg/altered 080_ Books of Ben Graham’s work is there in this ;Fher(: is “Benjamin Graham” in the dataset, not
string 5 Ben”.

store!
An exemplary value for the “Clusters II”” col-
Ambiguous 017 Hacker List the top 4 most frequent terms in the | umn is “year, work, new”. It is unclear whether
questions - “Clusters II” column. to list 4 most frequent sets of terms or 4 single-
word terms.
Ambiguous How many teen pregnancies are there in The name of the applicable column is “Preg-

nancy No”, which may refer to either cardinal

question this dataset? .
or ordinal numbers.
Ambicuous What is the name of the month that | There are three columns with dryness metrics:
ues ti%)n 078_Fires recorded the driest day when a fire took | RH (relative humidity), DC (Drought Code),
q place? and DMC (Duff Moisture Code).
Multiple possi- | 7, 1 ;¢ List 5 lifters from the 74 kg” weight | pp o are 10 lifters in this weight class.
ble answers class.
Multiple possi- 076_NBA List the 5 players with the least games There are 26 players who played just 1 game.
ble answers played.
Converting . Is the biggest lift performed greater than | The content of the applicable column is in kilo-
. 074_Lift R
units 880 pounds? grams, SO conversion is necessary.
. The numbers in the “Height” column range
Converting . List the weights of women with a height . .
. 077_Gestational from 135 to 196, so they are in centimeters
units of exactly 1m and 45cm.

(though not specified).

Language mis-
takes

020_Real

What are the 2 types of properties which
are listed more frequently?

It is not specified what “more frequently” refers
to, leading one to assume the question is about
the “most frequently” listed properties.

Language mis-
takes

077_Gestational

What is the most value of the status
marking hereditary diabetes risk in the
dataset?

It is unclear whether the question refers to “the
highest value” or “the most common value” (the
dataset authors admit a word is missing, indi-
cating that it is the latter).

Lexically chal-
lenging

072_Admissions

List the best 2 graduate record scores
of applicants whose stated motivation to
enter got a rating better than 4.

The phrase “graduate record scores” refers to
“GRE Score” (Graduate Record Examinations),
and “stated motivation to enter” refers to “SOP”
(statement of purpose).

Table 11: Challenging questions examples.

1232

