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Abstract

This paper presents our system developed for
the SemEval-2025 Task 5: LLMs4Subjects:
LLM-based Automated Subject Tagging for
a National Technical Library’s Open-Access
Catalog. Our system relies on prompting a
selection of LLMs with varying examples of
intellectually annotated records and asking the
LLMs to similarly suggest keywords for new
records. This few-shot prompting technique
is combined with a series of post-processing
steps that map the generated keywords to the
target vocabulary, aggregate the resulting sub-
ject terms to an ensemble vote and, finally, rank
them as to their relevance to the record. Our
system is fourth in the quantitative ranking in
the all-subjects track, but achieves the best re-
sult in the qualitative ranking conducted by sub-
ject indexing experts.

1 Introduction

The LLMs4Subject task (D’Souza et al., 2025)
aims at utilising large language models (LLMs)
for the task of automated subject indexing on a
dataset of open-access publications. Automated
subject indexing is a task that helps enabling ac-
cess to user-relevant publications by identifying
and recording their most important themes and top-
ics in the tagged subject terms. The ever-growing
number especially of digital publications requires
reliable automated systems for this task, which has
become infeasible to achieve manually. In our pre-
vious work on automated subject indexing on a
similar dataset (Kluge and Kéhler, 2024), we found
that the performance of LL.Ms, while succesfully
applied to a range of other tasks (Zhao et al., 2023;
Yang et al., 2024; Patil and Gudivada, 2024), was
not yet on par with classical supervised machine
learning methods. Therefore, it is important to do
further research on the capabilities of LLMs in this
context.

Rather than fine-tuning models ourselves, the

Maximilian Kihler
Deutsche Nationalbibliothek
Leipzig, Germany
m.kaehler@dnb.de

main strategy of our system is to leverage the ex-
isting capabilities of off-the-shelf foundational or
instruction-tuned open-weight LLMs. In contrast
to our previous work, the key contribution of this
system is that it does not rely on only one LLM,
but a combination of different language models
along with varying prompts to generate the sub-
ject terms. We found this ensemble approach to
dramatically improve the performance of our sys-
tem. To handle the challenge of the controlled
vocabulary unknown to the LLMs, we first gener-
ate free keywords with generative LLMs and then
map these onto the vocabulary with a smaller em-
bedding model.

The official quantitative results put us in fourth
place, the qualitative results even in first place. We
think that our approach provides valuable insights
into the chances and bounds of the few-shot prompt-
ing approach, showing that competitive results are
possible without fine-tuning and large training cor-
pora, simply by combining several LLMs into an
ensemble.

Our code is publicly available.!

2 Background

Outlining the field of automated subject index-
ing, Golub (2021) presented important fundamen-
tals, approaches and best practices for the task.
Referring to it as index term assignment, Erbs
et al. (2013) compared and combined two strate-
gies to perform this task: multi-label classification
(MLC) and keyword extraction. Detecting separate
strengths, their results aligned with Toepfer and
Seifert (2020), who also found the combination of
approaches to be beneficial.

Regarding frameworks for automated subject
indexing, the Annif system (Suominen, 2019) is
an important contribution. Annif has established

"nttps://github.com/

deutsche—-nationalbibliothek/semeval25_
llmensemble
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methods built in, like Ornikujiz, which is based
on partitioned-label-tree-method Bonsai (Khanda-
gale et al., 2020), or MLLM?, a lexical approach
building on Medelyan (2009)’s Maui.

In earlier work (Kluge and Kihler, 2024), we
presented experiments with a closed-source LLM
on automated subject indexing, but the two baseline
methods implemented in Annif mentioned above
were found to be as good as or even outperform our
LLM-based method.

LLMs have also been utilised for MLC (Peskine
et al., 2023; D’Oosterlinck et al., 2024; Zhu and
Zamani, 2024) and keyword extraction (Maragheh
et al., 2023; Lee et al., 2023).

Recently, building ensembles or fusioning (the
results of) LLMs has been addressed as a promising
research direction. There are different works shar-
ing the idea of exploiting the individual strengths
and diminishing the weaknesses in different LLMs
(Jiang et al., 2023b; Lu et al., 2023; Wang et al.,
2023; Fang et al., 2024; Wan et al., 2024). Explor-
ing the goal of building ensembles, Tekin et al.
(2024) aimed at maximising diversity and effi-
ciency, whereas Chen et al. (2023) targeted the
reduction of inference cost. Not only LL.Ms have
been combined, but also prompts (Pitis et al., 2023;
Hou et al., 2023). Combining both prompts and
models on the task of phishing detection, Trad and
Chehab (2024) contrasted prompt-based ensembles
(with one prompt and several LLMs), model-based
ensembles and an ensemble consisting of a mixture
of prompts and models.

3 System Overview

Our system is an enhancement from our previous
LLM-based subject indexing approach, described
in Kluge and Kéhler (2024). In total, it consists of
5 stages, complete, map, summarise, rank and com-
bine, as depicted in the overview in Figure 1. At
its core, the system approaches the subject index-
ing task as a keyword generation problem which
is solved by a few-shot prompting LLM procedure.
As these generated keywords are a priori not re-
stricted to the target vocabulary, a mapping stage
with a smaller word embedding model is needed as
a supplementary step. In comparison to our previ-
ous approach, we have extended the system by com-
bining multiple LLMs and prompts to an ensemble

https://github.com/tomtung/omikuji
*https://github.com/NatLibFi/Annif/
wiki/Backend:-MLLM
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Figure 1: Illustration of our LLM-ensemble approach.

and by introducing an LLM-powered ranking step
as in D’Oosterlinck et al. (2024).

3.1 Complete

The first step in our subject indexing system, com-
plete, is the generation of keywords following the
few-shot paradigm, similar to the procedure in Lee
et al. (2023). The complete-step is repeated over a
range of diverse off-the-shelf open-weight LLMs
and prompts with varying few-shot examples. Our
plan and intention of employing a broad variety of
models and prompts are twofold. In comparison to
a single-model single-prompt setting, we aim to:

* Improve recall with an overall greater set of
generated subject terms in the ensemble.

* Improve precision by utilising the overlap of
various model X prompt combinations.

Each prompt consists of an instruction and a set
of 8-12 examples illustrating how to perform the
subject indexing task with example texts and their
gold-standard subject terms.

Details for LLLM selection and the composition
of the few-shot prompts will be discussed in Sec-
tions 4.3 and 4.4.

3.2 Map

Keywords generated in the first stage are mapped
to controlled subject terms in the target vocabu-
lary using a word embedding model as in Zhu and
Zamani (2024).

For our map-stage, we used Chen et al. (2024)’s
BGE-M3-embeddings. Both generated keywords
and target vocabulary are embedded with the same
model.* To perform nearest neighbour search, we
uploaded the embeddings to a Weaviate® vector

*We embedded the keywords and vocabulary entries with-
out integrating them into a context sentence (which we did in

our previous approach).
Shttps://weaviate.io/
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storage enabling efficient HNSW-Search (Malkov
and Yashunin, 2016) in O(log L) complexity,
where L is the vocabulary size. One feature of
the vector storage is that it may be used in a hybrid
search mode (Cardenas, 2025), combining vector
search and traditional BM25 search (Robertson and
Zaragoza, 2009). Thus, each suggested keyword
is mapped to the most similar subject term and the
similarity score is stored for later use in the sum-
marise-step. Matches with a low similarity score
can be discarded at this stage with a tunable thresh-
old, eliminating keywords not represented in the
vocabulary.

3.3 Summarise

Each prompt and model outputs its own set of
predicted subject terms per document after com-
plete and map. In the subsequent summarise-
step, the subject terms are aggregated over all
model X prompt combinations by summing the sim-
ilarities obtained in the map-stage (3.2). This score
is normalised to a value between 0 and 1 by di-
viding it by the overall number of model x prompt
combinations. Hence, we obtain an ensemble score
Sens for each suggested subject term. This ensemble
score acts as a confidence measure of the individ-
ual suggestions and will be included in the final
ranking score in the later combine-stage (3.5).

3.4 Rank

In the rank-stage, that D’Oosterlinck et al. (2024)
also incorporated in their approach on MLC, an-
other LLM is employed to rank the subject terms
by their relevance. For each predicted subject term,
we ask the model to assess its relevance to the test
record at hand on a scale from O (not relevant) to
10 (extremely relevant). Normalised to a value be-
tween 0 and 1, we obtain a relevance score sy for
each suggested subject term. Including this addi-
tional rank-step has two reasons: Firstly, the rele-
vance score may improve the ensemble score that
is, by now, purely based on frequency and mapping
similarity. Asking an LLM to rate the suggestions
also takes into account the context of the text and
can thus determine the relevance of the suggestions.
Secondly, this step can be an additional control step
for the map-stage.

3.5 Combine

In the combine-stage, a final ranking score for each
suggested subject term is obtained as a weighted

average from the ensemble and relevance scores.
Sfin = & X Seps + (1 - a) X Srel 1)

In our experiments, we learned setting o« = 0.3
in equation 1 resulted in the best ranking (refer to
Appendix A.4 for more details). In other words, the
ordering of the subject terms was best when relying
more on the ranking than on the summarisation.

4 Experimental Setup
4.1 Data Handling

We used two randomly sampled disjoint subsets
(n = 1000) taken from the union of the develop-
ment sets given in the all-subjects and the tib-core
collection for optimisation and results analysis. On
the first subset, dev-opt, we tuned parameters like
the model x prompt selection (see Section 4.5) and
combine-parameter «. The second one, dev-test,
comprises the data on which we conducted our own
evaluation. In both subsets, we included both En-
glish and German texts, as well as all five text types
(Article, Book, Conference, Report, Thesis), while
keeping the proportions of the overall development
set through stratified sampling.

For both input texts and prompts, we used the
concatenation of title and abstract as text represen-
tation.

4.2 Vocabulary Adaptation

When inspecting early results of our system, we
found that the provided vocabulary, GND-Subjects-
all, was insufficient to represent the free keywords
resulting from the complete-stage. One particu-
lar issue was the absence of named entities, that
do appear in the full GND but not in this collec-
tion. Plausible keyword candidates, such as country
names, are missing and therefore falsely mapped
to unrelated subject terms. Choosing a threshold
for minimum similarity between keyword and sub-
ject terms was not enough to prevent this kind of
error. Thus, we extended the vocabulary to also
include named entities. As the full GND would
comprise over 1.3 million concepts, we chose to
only include named entities that are actually used
in the catalogue of the DNB. In total, our extended
vocabulary includes 309,417 distinct concepts (in-
cluding 200,035 subject terms from the all subjects
collection as well as 109,382 named entities from
the DNB-catalogue). We found that our system pro-
duces fewer false positives if we map the named
entities cleanly to the extended GND vocabulary
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HF user | Model Name

Llama-3.2-3B-Instruct
Llama-3.1-70B-Instruct
Mistral-7B-v0.1
Mistral-7B-Instruct-v0.3
Mixtral-8x7B-Instruct-v0.1

meta-llama

mistralai

teknium
openGPT-X

OpenHermes-2.5-Mistral-7B

Teuken-7B-instruct-research-v0.4

Table 1: LLMs used for the completion on the test set.

and exclude subject terms not belonging to the
targeted GND-Subjects-all collection afterwards.
Note that this is also why we only work with the
broader GND-Subjects-all vocabulary and not with
the tib-core subset.

4.3 Language Models

We experimented with a range of different models
for the complete-step. We used Llama 3 in 3B-
Instruct and 70B-Instruct variants (Grattafiori et al.,
2024), a few versions of Mistral 7B (Jiang et al.,
2023a), Mixtral of Experts (Jiang et al., 2024) and
Teuken-7B-Instruct (Ali et al., 2024). The overview
of models in our final selection is presented in Ta-
ble 1. We used Llama-3.1-8B-Instruct (Grattafiori
et al., 2024) as the ranking model.

For the complete-stage, the number of keywords
generated by the LLMs was controlled by setting
the minimum number of tokens to 24 and the maxi-
mum tokens to 100. Find the rest of the hyperpa-
rameters affecting the LLMs on our Github®.

4.4 Prompts

We sampled different sets of prompt examples
from the train splits of the all-subjects and tib-core
datasets. To account for the multilinguality of the
data, we assembled prompts with only German,
only English and mixed-language texts. However,
the gold-standard subject terms that we show to
the LLMs are always in German. Additionally, we
also created prompts with a restricted number of
subject terms and lemma overlap. Lemma overlap
is a measure for similarity between the example
text and its subject terms, which we also used in
Kluge and Kihler (2024).

Note that we leave the handling of multilingual-
ity completely to the LLMs. Analysing the key-
words resulting from the complete-stage on dev-
test, it wasn’t the case that the models tended to
generate English terms, but instead they followed

Shttps://github.com/

deutsche—-nationalbibliothek/semeval25__
llmensemble/blob/main/params.yaml

the few-shot demonstrations and output German
keywords.

You can view an overview of the prompt exam-
ple sampling in Appendix A.1. You can also see the
instructions for the complete- and rank-stages there.
The list of examples for each prompt is available
on our system’s Github’. The templates we used
to build the final prompt are also on our system’s
Github®.

4.5 Ensemble Optimisation

On the dev-opt subset we ran experiments with
9 models x 15 prompts, resulting in 135 sets of
subject term suggestions. However, one cannot
expect ever increasing the number of models and
prompts to unlimitedly lead to better performance.
Naturally, there is a tipping-point where ensem-
ble performance deteriorates when adding more
models or prompts. Also, there is a trade-off be-
tween the number of models and prompts and the
computing effort at inference time involed in the
complete-step. Therefore, we conducted an addi-
tional optimisation step to find the best subset of
models and prompts.

Our optimisation strategy was twofold: In a first
Monte-Carlo-like approach, we repeatedly sampled
model x prompt combinations and tested their joint
performance as an ensemble, yielding a subset of
50 out of 135 combinations that achieve the best
precision-recall (PR) balance in terms of area un-
der the precision-recall curve (PR-AUC) on the
dev-opt set. In a second step, we used a chain strat-
egy, where we iteratively removed model x prompt
combinations that did not contribute to the overall
performance, narrowing down the selection to 20
combinations. See Appendix A.2 for further re-
sults comparing our ensemble strategy with other
strategies as in Trad and Chehab (2024). Also, see
the impact of « on the results on the dev-test set in
Appendix A.4.

4.6 Implementation Details

We used vLLM (Kwon et al., 2023) to serve the
LLMs in the complete- and rank-stages. Embed-
dings for the keywords and the vocabulary were
generated using HuggingFace’s Text Embeddings

"https://github.com/
deutsche—-nationalbibliothek/semeval25_
llmensemble/tree/main/assets/prompts

*https://github.com/
deutsche—-nationalbibliothek/semeval25_
llmensemble/tree/main/assets/templates
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Team ‘ P5 R5 F1 5 ‘ R5 0 ‘ Ravg

Annif 0.263 0.494 0.343 0.681 0.630
DUTIRS831 0.256  0.484  0.335 0.640 0.605
RUC 0.230 0.438 0.302 0.642 0.586
icip 0.198  0.387  0.262 0.596 0.530
Ours 0.246  0.471  0.323 | 0.579 0.563

Table 2: Official quantitative results for top five teams
on the all-subjects task.

Inference’. As previously stated, we used Weavi-
ate'” as vector storage. To create our pipeline and
to manage our experiments, we used DVC (Ku-
prieiev et al., 2025).

5 Results

5.1 Quantitative Findings

Table 2 shows the quantitative results on the all-
subjects data of our system and the highest-ranking
other teams sorted by averaged recall (Rqy4). In
this metric, we are in fourth position. Note that
our approach, in contrast to supervised MLC al-
gorithms, does not estimate a probability for each
subject term in the entire vocab, but rather posi-
tively suggests a set of subject terms for each docu-
ment. Modifying the hyperparameters affecting the
number of output tokens can slightly increase the
number of different keywords, but our approach
doesn’t produce result lists of arbitrary length. For
recall@k values with high &, the average length of
our submitted label lists of 18 makes these scores
less adequate to properly estimate our system’s per-
formance. Therefore, we also included the scores
precision@5 (P5), recall@5 (R5) and F1@5 (F15)
in the table, as we find these metrics to be more
insightful to our system’s performance. Figure 4 in
the Appendix demonstrates how our system drops
off early in recall, while showing competitive re-
sults for lower values of k.

Looking at the more detailed results for our sys-
tem (depicted in Appendix 7), we learned that,
language-wise, one can observe better performance
on the German than on the English documents
(F1@5=0.332/F1 @5=0.307). 'This could be at-
tributed to the facts that we use a German instruc-
tion and that the vocabulary is presented in Ger-
man. Potentially, using an English instruction and
translating the vocabulary to English - both for the
few-shot examples and the mapping stage - would
help decrease this gap. Record-type-wise, Articles

*https://huggingface.co/docs/
text-embeddings—-inference/index
Yhttps://weaviate.io/

Team ‘ P5 R5 F15 ‘ R20 ‘ Ravg
DUTIR831 0488 0316  0.384 | 0.611 0.485
RUC Team 0.481 0.287  0.359 | 0.618 | 0.465
Annif 0457  0.301 0.363 0.577 | 0.448
jim 0.404  0.287  0.335 0.545 0.426
Ours 0.526 0339 0412 | 0.615 0.509

Table 3: Official qualitative ranking of the top five teams
(case 2).

are by far the worst category for our system with
F1@5=0.157. One reason for this could be the
absence of articles in most of our prompts. All
other text types achieve an F1@5 of at least 0.318.
Interestingly, Articles are the best record type for
the other leading teams, F1@5-wise.

5.2 Qualitative Findings

Table 3 shows the overall results for the top five
teams in the qualitative ranking. Here, we see our
system in the top position. In particular, the eval-
uation scenario (case 2) that eliminates those key-
words that are technically correct but irrelevant puts
a margin of 2.8% between our system and the sec-
ond best team w.r.t. F1@5. It is unsurprising that
the qualitative results are better than the quantita-
tive ones, as our approach does not involve fine-
tuning to the gold-standard. Subject terms may be
helpful and specific in describing the text content,
but at the same time not follow the formal rules ap-
plied by TIB’s subject specialists when annotating
the gold-standard.

Table 8 in the Appendix shows the F1@5 scores
for different subject categories. Our system was
rated particularly high in architecture, computer
science and economics. Worst performance was in
history, traffic engineering and mathematics.

5.3 Error Analysis

To get an understanding of the struggles our system
faces, we put a small subset of the dev-test set un-
der manual inspection and compared our system’s
suggested subject terms to the gold-standard. We
also analysed the content of title and abstract for
these documents. The questions we had in mind
while making this analysis were:

* Are there groups of gold-standard subject
terms we completely miss?

* Are there gold-standard subject terms that are
difficult to infer from the given text content?

Upon this manual inspection, we noticed that our
system benefits from two factors: specificity of a
term and its presence in the concatenated content
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of title and abstract. Specific subject terms that are
either directly present in the text or are paraphrased
in it seem to have the best chance of being cor-
rectly predicted. Generic subject terms are often
not found or falsely assigned (e.g. gold-standard:
law, found: international law, European law; gold-
standard: agricultural policy, found: agriculture).
Still, in the list of the most frequent subjects as-
signed to the dev-test set, there are a lot of general
terms, such as history, politics and culture. Espe-
cially when analysing results for the Article text
type, which our system performs worst on, we no-
ticed many gold-standard subject terms we suspect
to be difficult to directly infer from the given text
alone. For example, see the text and its assigned
keywords in Appendix A.8. In this record, a lot
of words related to the keywords are mentioned
in the text (e.g. economic development/growth,
agriculture). The exact concepts are not in the text
and are also not predicted by our LLM-ensemble.
Our system relying only on the prompt examples
and the concatenation of title and abstract struggles
with these types of more complex/abstract relation-
ships between text and subject terms. This is where
supervised learning approaches might have an ad-
vantage, as they can learn these relationships from
the training data.

Refer to Appendix A.8 for more details regard-
ing this error analysis.

6 Conclusion

To sum up, we have demonstrated that our ensem-
ble appoach is a promising way to combine the
strengths of different models and prompts, achiev-
ing competitive results in the LLMs4Subjects task.
As we have covered a wide range of prompts and
LLMs, we expect our system to provide a good es-
timate of the results possible by prompting LLMs
even without fine-tuning. While our system comes
with no extra training costs, a significant drawback
is the high cost involved in prompting multiple
LLMs at inference time. Appendix A.9 demon-
strates the costs of processing the documents with
each of the LLMs used in our ensemble. Particu-
larly larger models use up an enourmous amount of
GPU-ressources that may be infeasible in produc-
tive settings. In future work, we would like to fur-
ther investigate techniques for automated prompt
optimisation, such as DSPy (Khattab et al., 2023),
or methods belonging to the family of Parameter-
Efficient-Fine-tuning (PEFT). Also we would like

to investigate more sophisticated methods for the
ensemble combination.
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A Appendix

A.1 Prompt Examples and Instructions

A.1.1 Prompt Examples Sampling

Language N, Niabels Simjemma

1 German 8 random random
2 German 8 random random
3 German 8 random random
4 German 8 random random
5 German 8 random random
6 English 8 random random
7 English 8 random random
8 English 12 random random
9 Mixed 8 random random
10 Mixed 8 random random
11 Mixed 12 random random
12 German 8 1-2 0.7-1

13 German 8 1-2 0-0.3

14 German 8 5-10 0.7-1

15 German 8 5-10 0-0.3

Table 4: Prompt sampling overview.

A.1.2 Instruction for complete
The instruction we used for the complete-stage:

Dies ist eine Unterhaltung zwischen einem intelli-
genten, hilfsbereitem KI-Assistenten und einem
Nutzer. Der Assistent antwortet mit Schlag-
wortern auf den Text des Nutzers.

This is a conversation between an intelligent, help-
ful Al-assistant and a user. The assistant replies
with keywords to the text entered by the user.

A.1.3 Instruction for rank

This is the instruction we used for the rank-stage:

Du erhilst einen Text und ein Schlagwort. Be-
werte auf einer Skala von 1 bis 10, wie gut das
Schlagwort zu dem Text passt. Nenne keine Be-
griindungen. Gib nur die Zahl zwischen 1 und 10
zuriick.

You receive a text and a keyword. On a scale from
1 to 10, estimate how well the keyword fits to the
text. Do not give reasons. Only reply with the
number between 1 and 10.

A.2 Ablation Study Ensemble Strategy

An interesting insight into our system is to evaluate

the additional value of our ensembling approach.

As in Trad and Chehab (2024), we complemented
the top-20-set of modelsxprompt combinations
with other strategies:

* top-20-ensemble: with varying models
and prompts that generate candidates in the
complete stage.

* one-model-all-prompts: All prompts
are used with a single model.

e one-prompt—all-models: All models
are used with a single prompt.

* one-prompt-one-model: A best per-
forming single model-prompt combination is
used.

All strategies include the rank step and the final
combination step as in our overall system descrip-
tion. Figure 2 shows the PR-curves for the different
strategies on the dev-test set. Table 5 shows the
values of recall, precision and F1-score that could
be obtained with an (F1-)optimal calibration of
the system, also marked with a cross in Figure 2.
Note, unlike the PR-curves in Figure 4, the curves
in Figure 2 are not built only on the rank of the
suggested subject terms, but also their confidence
scores Sfp, as in Equation 1. Therefore, the curves
achieve higher precision values in comparision to
the curves that are built on rank only.
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Figure 2: Precision-Recall curves for different model
and prompt combinations, evaluated as doc-averages
over our dev-test set.

Ensemble Strategy [ Precision [ Recall | F1
top-20-ensemble 0.488 0.459 0.420
one-model-all-prompts 0.481 0.407 0.393
one-prompt-all-models 0.492 0.414 0.407
one-prompt-one-model 0.461 0.385 0.380

Table 5: Precision, recall, F1-score for F1-optimal cali-
bration of the system w.r.t. thresholding on confidence
scores and limiting on rank, computed on dev-test set.

Comparing the precision-recall curves in Fig-
ure 2 , we can see that the top—-20-ensemble
is well above the other strategies in the high preci-
sion as well as the high recall domain. However, in
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the part of the curve where the F1-score is optimal,
the ensembling strategies are quite close so that the
added value of the ensemble is not as pronounced
compared to the other strategies. This may indi-
cate that the selection of models and prompts is
good (yielding high precision and high recall in
the extreme), but the weighting mechanism of the
model-prompt combinations might be improved.
Furthermore, we may conclude that varying the
LLMs adds more value to the ensemble in contrast
to varying the prompts.

A.3 Ablation Study: Single Model
Performances

Another interesting insight into our system is
how each different LLM combined with various
prompts performs on its own. To illustrate the
spread of precision and recall for the different
model x prompt combinations, see Figure 3. These
results are computed on the bare candidate sets sug-
gested by the 1lm and mapped to the vocabulary. In
this figure, no ranking stage has been applied.
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% Mistral-7B-Instruct-v0.3

Figure 3: Precision-Recall Balance of single prompt-
model combinations on the dev-test sample.

We can see that the most resource-intense model
Llama-3.1-70B achieves highest recall with all
prompts. However, precision is not as high as
with the results stemming from the Mistral fam-
ily. The Teuken model performs generally worst.
Note, however, that even though a model-prompt

combination may have low performance individ-
ually, it may still add value to an ensemble, as it
may provide a different suggestion set than other
models. Indeed, for overall ensemble performance
we still found the Teuken model useful, probably
due to its unique tokenizer.

A.4 Influence of o on PR-AUC

a IM-1P 1IM-AP 1P-AM top20
0 0.239 0.285 0.297 0.301
0.1 | 0.235 0.344 0.373 0.402
0.2 | 0.235 0.345 0.377 0.411
0.3 | 0.235 0.344 0.375 0.411
0.4 | 0.234 0.340 0.369 0.408
0.5 | 0.232 0.335 0.366 0.405
0.6 | 0.232 0.333 0.363 0.402
0.7 | 0.231 0.330 0.359 0.397
0.8 | 0.230 0.327 0.355 0.394
0.9 | 0.229 0.324 0.350 0.391
1.0 | 0.170 0.312 0.328 0.384

Table 6: PR-AUC scores on the dev-test set for dif-
ferent values of o, which determines if the final rank-
ing relies more on the relevance score (a<0.5) or the
ensemble score (a>0.5). The ensembles are abbrevi-
ated: one-model-one-prompt (1M-1P), one-prompt-all-
models (1M-AP), one-prompt-all-models (1P-AM) and
top-20-ensemble (top20).

A.5 Comparing Precision-Recall Balance
among Top Five Teams

Figure 4 shows the PR curves for the top five teams
on the all-subjects task, plotting the values of preci-
sion@k and recall @k along the increasing values
of k as reported in the shared task’s leaderboard.
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Figure 4: Precision-Recall curves for the top five teams
on the all-subjects task.
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A.6 Results by Language and Record Type

Record Type Ps Rs F1;

Article 0.1108 0.2685 0.1569
Book 0.2396 0.4898 0.3218
Conference 0.2603 0.4561 0.3314
Report 0.2385 0.4784 0.3183
Thesis 0.2912  0.3932  0.3346
Language Ps Rs F15

de 0.2545 0.4787 0.3323
en 0.2307 0.4566  0.3065

Table 7: Metrics precision@5, recall@5 and F1@5 on
the test set grouped by record type and language.

A7

Table 8 shows the F1@5-score in the qualitative
rating for each individual subject category.

Qualitative Ratings by Subject Category

Subject Category | F1@5
Architecture 0.502
Chemistry 0.428
Electrical Engineering | 0.389
Material Science 0.435
History 0.322
Computer Science 0.531
Linguistics 0.421
Literature Studies 0.356
Mathematics 0.343
Economics 0.486
Physics 0.357
Social Sciences 0.409
Engineering 0.352
Traffic Engineering 0.343

Table 8: F1@5 scores in the qualitative ranking for
different subject categories.

A.8 Ablation Study: Error Analysis

In addition to the quantitative results, we had a
look at n = 50 random items from the dev-test
split. The results are in Table 9.

Not found
Gold Found Close Distant Difficult
140 86 20 34 44
(61.4%) (143%)  (24.3%) (31.4%)
26 10 6 10 17
(38.5%) (23.1%)  (38.5%) (64.4%)

Table 9: Overview of how many of the gold subject
terms in the ablation set are found, not found but have
one or more close suggestions, not found with only
distant suggestions found and difficult. Bottom row is
Article-only.

Sample text!? to illustrate difficulties of our sys-

2Source: https://github.com/
jd-coderepos/llmsdsubjects/blob/
main/shared-task-datasets/TIBKAT/
all-subjects/data/dev/Article/en/
3A1831638150. jsonld

tem with the text type Article:

Chapter 29 Agriculture and economic develop-
ment "This chapter takes an analytical look at
the potential role of agriculture in contributing to
economic growth, and develops a framework for
understanding and quantifying this contribution.
The framework points to the key areas where pos-
itive linkages, not necessarily well-mediated by
markets, might exist, and it highlights the empir-
ical difficulties in establishing their quantitative
magnitude and direction of impact. Evidence on
the impact of investments in rural education and
of nutrition on economic growth is reviewed. The
policy discussion focuses especially on the role
of agricultural growth in poverty alleviation and
the nature of the market environment that will
stimulate that growth.

Keywords: Landwirtschaftliche Betriebslehre
(Agricultural economics), Agrarpolitik (Agri-
cultural policy), Landwirtschaft (Agriculture),
Wirtschaftstheorie (Economic theory)

A.9 Hardware and Ressources

All our computations were run on our internal hard-
ware consisting of 2 x Intel (R) Xeon (R)
Gold 6338T CPU @ 2.10GHz  processors
with two NVIDIA A100 GPUs (each 80GB
RAM) attached. Table 10 shows GPU-hours
consumed by generating suggestions for the
all-subjects test set of 27.987 documents.

Model Name [ Size | GPURh [ it/s
Llama-3.2-3B-Instruct 3B 2x 02:44 h 2.84
Llama-3.1-70B-Instruct 70B 2x 17:36 h 0.44
Mistral-7B-v0.1 7B 2x 04:16 h 1.82
Mistral-7B-Instruct-v0.3 7B 2% 03:50 h 2.03
Mixtral-8x7B-Instruct-v0.1 56B 2% 06:28 h 1.20
OpenHermes—-2.5-Mistral-7B 7B 2x 03:36 h 2.16
Teuken-7B-instruct- 7B 2% 02:59 h 261
research-v0.4

Table 10: Number of model parameters, GPU hours and
iterations per second for different models generating
keywords in the complete stage. Times measured for
generating suggestions for all-subjects test set.
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