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Abstract

While Large Language Models (LLMs) have
driven significant progress in Natural Language
Generation (NLG), their propensity to hal-
lucinate—generating factually incorrect con-
tent—remains a barrier to wider adoption.
Most existing hallucination detection methods
classify text at the sentence or document level,
lacking the precision to identify the exact spans
of text containing hallucinations, termed hallu-
cination spans. We propose a methodology that
generates supplementary context and processes
it alongside the evaluated text through an LLM,
extracting the internal weights (features) per
token from various layers. These extracted fea-
tures serve as input for a neural network classi-
fier designed to perform token-level binary clas-
sification of hallucinations. Finally, we iden-
tify hallucination spans by mapping token-level
predictions to character-level predictions. Our
hallucination detection model ranked top-ten
in 13 of 14 languages and first in French, eval-
uated on the Mu-SHROOM dataset within the
SemEval: Multilingual Shared-task on Hallu-
cinations and Related Observable Overgenera-
tion Mistakes (Mu-SHROOM).

1 Introduction

The domain of Natural Language Generation
(NLG) is witnessing a remarkable transformation
with the emergence of Large Language Models
(LLMs) (OpenAI, 2024; Manyika and Hsiao, 2023;
Dubey et al., 2024). LLMs have been shown to out-
perform traditional Natural Language Processing
(NLP) approaches across a wide range of appli-
cations (Kung et al., 2023; Mousavi et al., 2023).
Despite the rapid advancements in LLMs, a con-
cerning trend has emerged where these models gen-
erate hallucinations (Bang et al., 2023; Ji et al.,
2023a), resulting in content that appears plausible
but is factually unsupported. Hallucinations can
be categorized into extrinsic errors, where claims
conflict with external facts, and intrinsic errors,

where claims are not fully grounded in the source
material. This issue is particularly critical in sensi-
tive domains such as healthcare, finance, and legal
services, where the accuracy of generated content
is paramount. Hence, the automatic detection of
hallucinated content has become an active area of
research, aiming to enhance the reliability and trust-
worthiness of LLM-generated content (Zhang et al.,
2023b; Bai et al., 2024).

Recent studies have explored different method-
ologies for hallucination detection, including nat-
ural language inference (NLI) and factual consis-
tency checking (Zha et al., 2023; Chandler et al.,
2024; Tang et al., 2024), as well as textual en-
tailment techniques (Sankararaman et al., 2024;
Fan et al., 2024). Additionally, approaches like
reference-free (Zero Context) hallucination de-
tection have been investigated (Manakul et al.,
2023; Hu et al., 2024a; Li et al., 2024b), along-
side evidence retrieval methods utilizing Retrieval-
Augmented Generation (RAG) or Web Search
(Zimmerman et al., 2024; Tian et al., 2024; Li et al.,
2024a).

However, fact-checking models often demon-
strate inconsistent performance when evaluating
text across different languages. Vu et al. (2024)
highlights that even state-of-the-art (SOTA) LLMs,
when used for fact-checking, struggle with text in
low and medium-resource languages. Moreover,
many popular hallucination detection methods clas-
sify hallucinations at the sentence or document
level, which limits their ability to precisely identify
and correct the specific text responsible for these
errors.

To address this limitation, Liu et al. (2022) in-
troduced the HaDes dataset (HAllucination DE-
tection dataSet), enabling fine-grained, reference-
free hallucination classification at the token level.
Uncertainty-based and consistency-based meth-
ods were proposed to detect token level halluci-
nations (Ji et al., 2023b). For example, Mitchell
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et al. (2023) utilized log-probability curve detec-
tion, while Kuhn et al. (2023) estimated semantic
likelihoods by clustering generated sequences. Fur-
thermore, Zhang et al. (2023a) explored token type
and frequency for detecting hallucinations based
on uncertainty. Building on these ideas, Ma and
Wang (2024) developed metrics assessing token
cohesiveness through successive rounds of random
token deletion and measuring semantic differences.

Recent advancements have shown promise in us-
ing LLM internal states for detecting token-level
hallucinations. For instance, Hu et al. (2024b)
focused on identifying hallucinations by analyz-
ing embeddings and gradients to gauge probability
distribution differences, while Sun et al. (2025)
applied mechanistic interpretability within RAG
scenarios. Many of these solutions, however, en-
counter common challenges. They often rely heav-
ily on large amounts of labeled training data and ne-
cessitate multiple inference calls for each sentence,
which can be resource-intensive. They also fre-
quently fall short in testing across low and medium-
resource languages, or in conducting comprehen-
sive multilingual evaluations.

To boost this area of research further, the Se-
mEval1 organizers introduced the Mu-SHROOM
task. This task focuses on detecting hallucination
spans in the outputs of instruction-tuned LLMs in a
multilingual context. The contribution of this study
are:

• We employed web search to incorporate sup-
plementary contextual information into the
model.

• We develop a binary multi-lingual token-level
hallucination detection classifier, where the
internal weights of LLM are used as a feature
vectors. The resulting token-level predictions
are then converted into character-level predic-
tions, allowing for the precise identification
of hallucinated spans within the text.

• Our model ranks within the top 10 for 13 out
of 14 languages on the Mu-SHROOM dataset
and secured first place in French.

2 Mu-SHROOM Dataset

The Mu-SHROOM dataset is a multilingual bench-
mark dataset for detecting hallucination spans in

1https://helsinki-nlp.github.io/shroom/

outputs generated by LLM. The dataset encom-
passes a diverse set of 14 languages: Arabic-
Modern Standard (AR), Basque (EU), Catalan
(CA), Mandarin Chinese (ZH), Czech (CS), En-
glish (EN), Farsi (FA), Finnish (FI), French (FR),
German (DE), Hindi (HI), Italian (IT), Spanish
(ES), and Swedish (SV).

Language Training
Samples

Test
Samples

Arabic (AR) 50 150
Basque (EU) 0 99
Catalan (CA) 0 100
Chinese (ZH) 50 150
Czech (CS) 0 100
English (EN) 53 154
Farsi (FA) 0 100
Finnish (FI) 50 150
French (FR) 52 150
German (DE) 50 150
Hindi (HI) 50 150
Italian (IT) 50 150
Spanish (ES) 53 152
Swedish (SV) 49 147
Total samples 507 1902

Table 1: Sample distribution across languages in train-
ing and test sets of the Mu-SHROOM dataset.

The Mu-SHROOM dataset contains the follow-
ing columns:

• id: a unique datapoint identifier

• lang: the language of the question and output
text

• model_input: the input passed to the models
for generation

• model_id: denoting the HuggingFace identi-
fier of the corresponding model

• model_output_text: the output generated by
a LLM when provided the aforementioned
input

• model_logits : the logits from the model

• model_tokens : the tokens created by model

• soft_labels: provided as a list of dictionary ob-
jects, where each dictionary objects contains
the following keys:
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– ‘start‘, indicating the start of the halluci-
nation span

– ‘end‘, indicating the end of the hallucina-
tion span

– ‘prob‘, the empirical probabilty (propor-
tion of annotators) marking the span as a
hallucination

• hard_labels: provided as a list of pairs, where
each pair corresponds to the start (included)
and end (excluded) of a hallucination

Table 1 provides a detailed breakdown of sam-
ple distribution within the training and testing sets
across the various languages represented in the
dataset. The dataset comprises 507 samples for
training and 1902 samples for testing. For evalua-
tion purpose, the shared task organizers assessed
the performance of the submissions on a test set
of 1902 samples. The test set labels were not dis-
closed to participants during the submission phase.
Additional details about the task and dataset are
available at (Vázquez et al., 2025).

3 Proposed Approach

In this section, we describe our proposed approach
for detecting hallucination spans as depicted in Fig-
ure 1. The approach encompasses three primary
components: 1) context generation, 2) extracting
token-level internal weights from LLM, and 3) con-
structing a binary classifier to produce token-level
predictions, which are subsequently transformed
into character-level predictions.

3.1 Context Generation
To enhance the model’s understanding, we retrieve
additional contextual information relevant to the
model_output_text. Following Chen et al. (2022);
Ousidhoum et al. (2022), we systematically de-
compose the model_output_text into a structured
list of claims using GPT-4o-mini, as this decom-
position allows for us to increase the recall of
needed facts. Subsequently, we input this list of
claims into GPT-4o-mini to generate queries for
each claim for the purpose of fact-checking. The
prompts employed for both claim decomposition
and query generation are detailed in Appendix Sec-
tion A. These queries are submitted to the Duck-
DuckGo search engine to retrieve titles, relevant
text snippets, and URLs for each query. Finally, we
concatenate all the search results and refer to this
aggregated output as the Context.

3.2 Extracting Token-level Features

Once the context has been prepared, we format the
input to include a instruction, context, model_input,
and model_output_text, structured as follows:

### Instruction: "Answer the following question
in the language of the question and then compare
your answer with the given output."
### Context: context
### Question: model_input
### Output: model_output_text

This above input is processed by the
Llama-3.2-1B/3B-Instruct models, and
the token-level internal weights are extracted from
selected layers of the LLM. The specific layers
utilized include hook_attn_out, hook_resid_post,
and hook_scale (hook_ln1_scale, hook_ln2_scale,
ln_final_hook_scale). The motivation for lever-
aging these internal weights lies in their capacity
to capture intricate patterns in language represen-
tation, enabling a deeper understanding of the
model’s decision-making processes.

The hook_attn_out feature reflects the final out-
put of the attention mechanism, which is critical
for understanding the relationships and contextual
relevance between tokens. The hook_resid_post
provides information about the residual connec-
tions after the normalization and attention layers
in each block, ensuring the retention of critical fea-
tures throughout the model. Finally, hook_scale
represents the scaling factors of the layer normal-
ization in each transformer block. Improper scaling
at this stage could cause attention mechanisms to
overemphasize or disregard certain tokens, poten-
tially leading to hallucinations. More details on
the dimension of each token feature vector are pro-
vided in Table 3 in Appendix Section B.

By analyzing these internal weights, we can ac-
cess the model’s learned knowledge and contextual
embeddings, which are crucial for accurately de-
tecting hallucination spans. This approach facili-
tates a more granular analysis of the interactions
between tokens, enhancing the predictive perfor-
mance of our hallucination detection classifier and
allowing for more precise assessments of generated
content.

3.3 Binary Classifier

The token-level features are subsequently provided
as input to a linear classifier consisting of two
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Figure 1: Our End-to-End Pipeline

fully connected layers activated by ReLU, which
facilitates the generation of token-level predictions.
These token-level outputs are then transformed into
character-level features by performing a substring
search, aligning each token produced by the lan-
guage model with its corresponding character-level
indices in the model_output_text. From this binary
array of character-level predictions, we extract con-
tinuous sequences of hallucination spans.

4 Experimemts

This section details the experimental evaluation of
our approach. To assess the effectiveness of our
method, we employed two established character-
level metrics such as Intersection-over-union (IoU)
and Spearman correlation (S.Corr). The IoU is
calculated as the ratio of the number of charac-
ters identified as hallucinations by our model to
the total number of unique characters in both the
predicted and actual sets. Conversely, Spearman
correlation is calculated by comparing the probabil-
ities assigned by the model that indicate a charac-
ter’s classification as part of a hallucination against
the empirical probabilities observed from human
annotators.

4.1 Results

The performance of our pipeline on the test dataset,
evaluated externally, is summarized in Table 2. We
report IoU scores, Spearman Correlation, and rank
performance based IoU on the Mu-SHROOM Eval
Leaderboard.2 Our pipeline demonstrates compet-
itive performance across all languages except for

2https://helsinki-nlp.github.io/shroom/iou_rankings

Chinese, securing first position in French based on
IoU metrics.

4.2 Language Model Selection

We experiment with Llama-3.2-1B-Instruct
and Llama-3.2-3B-Instruct models to process
input and extract internal attention weights. Ta-
ble 4 in Appendix Section B shows that the
larger model, Llama-3.2-3B-Instruct, outper-
forms Llama-3.2-1B-Instruct in 7 out of 14 lan-
guages based on IoU scores and 13 out of 14 lan-
guages according to S.Corr scores. We limit our
study to these lightweight models due to the sig-
nificant memory overhead required by the Trans-
formerLens3 library to track and store internal at-
tention weights during inference with longer texts.

4.3 Impact of Including Web Search Results

We conducted experiments to evaluate the impact
of enabling versus disabling the search component
within our pipeline on hallucination span detection
performance. As shown in Table 5 in Appendix
Section B, the integration of web search results
into the LLM prompt yielded a marginal improve-
ment in performance, with improved performance
observed in 12 out of 14 languages as measured by
Intersection over Union (IoU) and Spearman corre-
lation. These findings suggest that the inclusion of
search results enhances performance detection.

5 Conclusion

In this study, we tackles the critical challenge of
hallucination phenomenon observed in LLMs. By

3https://transformerlensorg.github.io/TransformerLens/
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Language Performance Metrics
IoU (Ours) S.Corr (Ours) Rank SOTA Team Baseline Neural

Arabic 0.604 (1B) 0.605 (1B) 4/32 NotMSA (0.670) 0.042
Basque 0.522 (3B) 0.516 (3B) 8/26 NotMSA (0.613) 0.021
Catalan 0.530 (1B) 0.557 (1B) 9/24 UCSC (0.721) 0.052
Chinese 0.460 (3B) 0.299 (3B) 13/29 YNU-HPCC (0.554) 0.024
Czech 0.443 (1B) 0.481 (1B) 7/26 AILSNTUA (0.543) 0.096
English 0.523 (1B) 0.561 (1B) 10/44 iai_MSU (0.651) 0.031
Farsi 0.575 (1B) 0.519 (1B) 9/26 AILSNTUA (0.711) 0.000
Finnish 0.631 (1B) 0.636 (1B) 4/30 UCSC (0.648) 0.004
French 0.647 (3B) 0.619 (3B) 1/33 Deloitte (0.647) 0.002
German 0.566 (3B) 0.549 (3B) 6/31 UCSC (0.624) 0.032
Hindi 0.632 (3B) 0.639 (3B) 10/27 ccnu (0.747) 0.003
Italian 0.706 (1B) 0.614 (1B) 8/31 UCSC (0.787) 0.010
Spanish 0.407 (3B) 0.585 (3B) 10/35 ATLANTIS (0.531) 0.072
Swedish 0.622 (3B) 0.537 (3B) 3/30 UCSC (0.642) 0.031

Table 2: Uncertainty-based and consistency-based results for languages and teams in the Mu-SHROOM shared task
challenge. Values show IoU scores (with Llama-3.2-1B/3B), Spearman correlation, ranking position (out of total
participants for that language), SOTA team with their IoU score in parentheses, and the neural baseline performance.

employing a neural network classifier that utilizes
features extracted from various layers of an LLM,
we enable precise identification of hallucination
spans within generated text. Our model achieved a
top ten ranking across 13 languages achieving first
place specifically in French.

6 Limitations and Future Work

Our methodology necessitates direct access to the
internal states of Large Language Models (LLMs),
which restricts its deployment to systems that fa-
cilitate such access. Utilizing a limited dataset of
approximately 507 labeled training examples, we
implemented a rudimentary linear classifier for hal-
lucination prediction. By treating each token inde-
pendently, we potentially lose important signals for
hallucination detection. Although our search-based
verification process enhances performance metrics,
it introduces increased latency and computational
demands.

As part of future work, we plan to investigate
advanced sequence modeling architectures capable
of leveraging the complete sequential relationships
inherent in LLM internal states, thereby integrat-
ing both layer-wise and token-wise dependencies.
Additional features, such as internal gradients and
other attention patterns, may yield more informa-
tive signals for detection purposes. With more train-
ing data, these architectures could better capture

the complex dynamics of hallucination generation.
With an expanded dataset, these architectures could
potentially capture the intricate dynamics associ-
ated with hallucination generation more effectively.
Furthermore, assessing the efficacy of our method
in identifying intrinsic hallucinations constitutes a
significant avenue for continued research.
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A Appendix:A

Claim Decomposition Prompt

**Role:**

Your task is to decompose the following
output into standalone, decontextualized
sentences while retaining all original
information. Each sentence should be
individually verifiable, free from implied
connections or dependencies on other
sentences. Avoid introducing information
not explicitly stated. If the output cannot
be meaningfully decomposed, return it
unchanged.

**Guidelines:**
1. Each decomposed sentence must be
standalone, without relying on other
sentences for context or meaning.
2. Avoid making assumptions or inferring
connections not explicitly stated in the
output.
- Ensure that all information from the
original output is preserved and split into
its most granular, decontextualized form.

Query Generation Prompt

**Objective:**
Your task is to generate a query for each
fact provided. Each query must be concise,
specific, and designed to retrieve or verify
the exact information presented in the fact.
Use the format provided in the example,
separating each query with a new line and a
dash.

**Guidelines:**
1. Each query must be standalone, without
relying on other facts for context or
meaning.
2. Avoid introducing additional information
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or rephrasing the fact unnecessarily.
3. Ensure each query is precise enough to
verify the specific fact it corresponds to.

B Appendix:B

Feature Type Dimension # Blocks Total Features
hook_attn_out 3,072 28 86,016
hook_resid_post 3,072 28 86,016
ln1.hook_scale* 1 28 28
ln2.hook_scale* 1 28 28
ln_final.hook_scale* 1 1 1

Total Features: 172,089

Table 3: Feature set composition for
Llama-3.2-3B-Instruct classifier. *Including
final layer normalization.

Language Llama-3.2-1B-Instruct Llama-3.2-3B-Instruct
IoU S.Corr. IoU S.Corr.

Arabic 0.60 0.60 0.59 0.64
Basque 0.47 0.50 0.52 0.52
Catalan 0.53 0.56 0.50 0.62
Chinese 0.45 0.32 0.46 0.30
Czech 0.44 0.48 0.37 0.50
English 0.52 0.56 0.51 0.58
Farsi 0.58 0.52 0.51 0.54
Finnish 0.63 0.64 0.63 0.64
French 0.57 0.60 0.65 0.62
German 0.55 0.53 0.57 0.55
Hindi 0.61 0.62 0.63 0.64
Italian 0.71 0.61 0.63 0.65
Spanish 0.40 0.56 0.41 0.59
Swedish 0.61 0.51 0.62 0.54

Table 4: Hallucination Span detection
performance by language over the test
dataset for Llama-3.2-1B-Instruct and
Llama-3.2-3B-Instruct. Values are rounded
to two decimals. Bold values indicate the best
performance for IoU and Spearman correlation for each
language.

Language With Search Without Search
IoU S.Corr. IoU S.Corr.

Arabic 0.59 0.64 0.55 0.58
Basque 0.52 0.52 0.50 0.51
Catalan 0.50 0.62 0.48 0.55
Chinese 0.46 0.30 0.49 0.51
Czech 0.37 0.50 0.41 0.46
English 0.51 0.58 0.50 0.54
Farsi 0.51 0.54 0.49 0.50
Finnish 0.63 0.64 0.61 0.62
French 0.65 0.62 0.61 0.57
German 0.57 0.55 0.51 0.50
Hindi 0.63 0.64 0.62 0.65
Italian 0.63 0.65 0.61 0.62
Spanish 0.41 0.59 0.35 0.53
Swedish 0.62 0.54 0.51 0.53

Table 5: Hallucination Span detection performance by
language over the test dataset with and without search
for Llama-3.2-3B-Instruct. Values are rounded to
two decimals. Bold values indicate the best performance
for IoU and Spearman correlation for each language.
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