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Abstract
The Multilingual shared-task on Hallucinations
and Related Observable Overgeneration Mis-
takes in the SemEval-2025 competition aims
to detect hallucination spans in the outputs of
instruction-tuned LLMs in a multilingual con-
text. In this paper, we address the detection of
span hallucinations by applying an ensemble
of approaches. In particular, we synthesized
a dataset and fine-tuned LLM to detect hallu-
cination spans. In addition, we combined this
approach with a white-box method based on un-
certainty quantification techniques. Using our
combined pipeline, we achieved 3rd place in
detecting span hallucinations in Arabic, Cata-
lan, Finnish, Italian, and ranked within the top
ten for the rest of the languages.

1 Introduction

In recent years, there have been significant advance-
ments in Natural Language Generation (NLG) mod-
els, mainly due to transformer-based architectures
such as GPT (Radford et al., 2019). Nevertheless,
the field faces two related challenges: the first is
the propensity for current neural systems to create
incorrect, yet coherent outputs, and the second is
the inefficiency of current metrics in prioritizing
accuracy over fluency. This leads to a phenomenon
known as “hallucination”, where NLG models gen-
erate cohere but inaccurate outputs that are difficult
to automatically identify (Ji et al., 2023).

The shared-task on Multilingual Hallucinations
and Related Observable Overgeneration Mistakes
(Mu-SHROOM, Vázquez et al. (2025)) has been
suggested to address this challenge. In particu-
lar, the Mu-SHROOM task aims to detect hallu-
cination spans in the outputs of instruction-tuned
LLMs in a multilingual context models (Arabic,
Basque, Catalan, Chinese, Czech, English, Farsi,
Finnish, French, German, Hindi, Italian, Spanish,
and Swedish).1

1https://helsinki-nlp.github.io/shroom/

Mu-SHROOM is the continuation of the com-
petitions in hallucination detection, the first being
SHROOM. Its goal was to detect hallucinations
and overgeneration errors within various generation
tasks, such as machine translation, paraphrasing,
and definition modeling (Maksimov et al., 2024;
Rykov et al., 2024).

To address the Mu-SHROOM challenge, we de-
veloped an ensemble of approaches. First, we fine-
tuned LLM on synthetic span-level hallucination
detection data. Then, we combined this approach
with white-box methods based on uncertainty quan-
tification (UQ) techniques. Using our combined
pipeline, we achieved 3rd place in detecting span
hallucinations in Arabic, Catalan, Finnish, Italian,
and ranked within the top ten for the rest of the
languages.

Our contribution could be summarized as fol-
lows:

• We demonstrate a pipeline for synthetic data
generation without any human annotation for
span-level hallucination detection.

• We propose training an additional lightweight
model that leverages multiple white-box UQ
methods, demonstrating effectiveness without
relying on any external information.

• We demonstrate that combining both the
white-box and black-box methods can further
enhance performance.

2 Related Work

2.1 Black-box

Within the scope of black-box approaches for hallu-
cination detection, FactScore (Min et al., 2023) is a
well-known approach. It first extracts atomic facts
from the model’s response and compares them to
a retrieved context using an additional LLM. This
process yields a fact-verification score that indi-
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cates whether the claims are supported by the re-
trieved context.

Several approaches exist for the detection
of word-level hallucinations, among which
RAGTruth (Niu et al., 2024) is a widely recog-
nized pipeline for this task. Initially, the devel-
oped dataset and its corresponding benchmark
were designed to evaluate LLMs within a retrieval-
augmented generation (RAG) pipeline for various
tasks, such as summarization, question-answering,
and others. However, it could be easily adapted for
the fact-checking task. The dataset was created us-
ing human annotation of LLM responses to capture
hallucinations.

Furthermore, the task of hallucination detection
can naturally be extended to hallucination editing.
For example, the FAVA (Mishra et al., 2024) model
is specifically trained for word-level hallucination
detection and editing tasks according to the intro-
duced hallucination taxonomy. To collect training
data, the authors asked LLM to insert errors from
the introduced taxonomy into the responses.

Despite their advantages, both RAGTruth and
FAVA are limited in their applicability, as they are
designed only for English-language tasks.

2.2 White-box
White-box approaches leverage internal generation
signals, such as token-level probability distribu-
tions or hidden states, to detect hallucination of
LLMs. For instance, Token Probability and Token
Entropy (Fomicheva et al., 2020) utilize the prob-
ability distribution of each token. Belikova et al.
(2024) demonstrated that token maximum probabil-
ity and margin probability can be successfully used
to enhance the trustworthiness of the RAG pipeline
over knowledge bases. Moskvoretskii et al. (2025)
showed that UQ scores can be used to develop
adaptive RAG pipeline that outperforms the vanilla
RAG in both performance and computational ef-
ficiency. Krayko et al. (2025) applied UQ scores,
particularly mean token entropy and mean token
probability, for the continuous evaluation of the
RAG pipeline. Fadeeva et al. (2023) introduced
the Claim Conditioned Probability (CCP) method,
which evaluates the consistency of the several most
probable token candidates.

These methods, while simple and effective for
various tasks, exhibit several limitations in hallu-
cination detection across multiple models. The
distribution of UQ scores can differ between mod-
els. Furthermore, UQ scores are often poorly cali-

Figure 1: Synthetic data collection procedure. The
detailed process is described in Section 3.

brated (Kadavath et al., 2022), which requires the
use of an additional trainable model to normalize
these values.

Studies have shown that hidden states (Azaria
and Mitchell, 2023; CH-Wang et al., 2024; Vazhent-
sev et al., 2025) and attention matrices (Chuang
et al., 2024; Vazhentsev et al., 2024) of LLMs con-
tain significant information on the truthfulness of
model output. These works suggest training aux-
iliary models to predict uncertainty using these
features.

Various methods require multiple stochastic sam-
ples from LLMs to quantify uncertainty based on
the consistency of generated answers (Manakul
et al., 2023; Lin et al., 2023; Duan et al., 2024;
Vashurin et al., 2025). Although these approaches
are effective in sequence-level tasks, none of these
methods can be directly applied to token-level hal-
lucination detection.

3 Multilingual Synthetic Dataset for
Hallucination Detection

All of our approaches require additional data for
fine-tuning and calibration. The exact scheme of
synthetic data generation is shown in Figure 1.

To collect synthetic data, we first generate multi-
lingual question-context-answer triplets based on
contexts from Wikipedia. Generation was per-
formed using GPT-4o for the exact prompt used to
generate question-answer pairs. Next, we collect
the hypotheses by passing the generated questions
without any contexts to various LLMs. Finally, we
ask GPT-4o to find all inconsistencies between the
LLM answer and the golden answer. Any inconsis-
tent information in the hypotheses that contradicts
the golden answer is considered a hallucination.
In total, synthetic dataset contains 52 271 samples
after all filtering stages.

The generation of synthetic training data through
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LLM has been successfully employed to address
detoxification (Moskovskiy et al., 2024, 2025) and
PII detection (Savkin et al., 2025).

4 System Overview

4.1 Black-box

Our black-box approach incorporates a retriever
that provides additional context along with the
question-answer pair to a fine-tuned multilingual
LLM. The LLM then highlights the spans in the an-
swer that contain hallucinations. The architecture
of the black-box pipeline is shown in Figure 2 in
Appendix D.

A fine-tuned LLM, by itself, provides only hard
labels, as it simply inserts special tokens around
the spans with hallucinations. Therefore, to ob-
tain soft labels with probabilities for each span,
we employ two strategies. The first method is a
logit-based approach, which assigns the proba-
bility of the span based on the probability of the
opening tag. The next method is a sampling-based
approach that samples the annotations from the
model several times and aggregates the predictions.
The probability of a span is calculated as the nor-
malized frequency of its occurrence across samples.
In addition, the baseline approach confidently set
probability of 1.0 for each predicted span.

4.2 White-box

Our white-box pipeline is designed to predict token-
level hallucination probabilities by leveraging un-
certainty scores. For a given generated text ỹ of a
length N , for each token ti ∈ ỹ, i = 1 . . . N , the
procedure consists of the following steps:

1. We construct a feature vector xi by concate-
nating the uncertainty scores obtained using a
sliding window centered at the position i. For
a given window size k, the feature vector is
defined as:

xi =
M−1⊕

m=0

[
u
(m)
i−k, u

(m)
i−k+1, . . . , u

(m)
i+k

]
,

where
⊕

denotes the concatenation operation,
u
(m)
j represents the uncertainty score from

method m for token j, and M – total number
of UQ methods. In our experiments, we use
Token Probability, Token Entropy, and CCP.
For tokens outside the valid range (i.e., if j <
0 or j > N ), we set u(m)

j = 0.

2. The target label yi ∈ [0, 1] is defined as the
maximum hallucination probability across all
spans covering the token. If token i does not
belong to any hallucinated span, we set yi =
0.

Finally, we train a lightweight calibration model
f(·) to predict the hallucination probability for
each token, given its feature xi. For the model f(·),
we employ logistic regression (LR) and gradient
boosting (GB). To convert the soft probability pre-
dictions into binary hard labels, we determine an
optimal probability threshold using the validation
set.

4.3 Merging

To take advantage of both approaches, we inte-
grate predictions from the white-box and black-box
methods. For each token, the final hallucination
probability is calculated as a weighted average:

pfinal = αpblack box + β pwhite box,

where pblack box and pwhite box represent the proba-
bilities obtained using the black-box and white-box
methods, respectively, with α and β being positive
tunable parameters that satisfy α+ β = 1.

5 Experimental Setup

5.1 Baselines

For all baselines, we adopt the context obtained in
the retrieval stage for the black-box method, de-
scribed in Section 5.2. Thus, we evaluated the
FAVA2 model passing questions and answers from
the validation and test subsets along with the re-
trieved contexts. This ensures FAVA and black-box
are tested on identical input data. We did not per-
form any soft labeling for FAVA, therefore, we
assign a probability of 1.0 for each span.

Furthermore, we train the ModernBERT3 en-
coder on the binary token classification task using
our synthetic data. The training parameters are
presented in Appendix E.

For FactScore, we use retrieved contexts to ver-
ify each generated atomic fact. For each token, the
soft label equals the frequency of it appearing in un-
supported claims or equals zero for all tokens that
appear in all claims or are present in the original
input.

2https://hf.co/fava-uw/fava-model
3https://hf.co/answerdotai/ModernBERT-large
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We also select different LLMs as baselines, in-
cluding both open-source and proprietary ones:
GPT-4o, Phi-44, and Qwen2.5-7B-it. In the prompt,
we asked models to identify and highlight halluci-
nations in the text using the tags [HAL] and [/HAL].
The evaluation is performed with retrieved context
in 3-shot mode, where, for each question-answer
pair, we randomly sample three examples of cor-
rectly identified hallucinations from the language-
specific validation set.

5.2 Black-box
Model fine-tuning: As an LLM for the black-
box hallucination detection pipeline, we fully fine-
tuned Qwen2.5-7B-Instruct5 due to its strong mul-
tilingual capabilities. See Appendix F for more
details on LLM selection. For highlighting hallu-
cination spans, we add two special tokens [HAL]
and [/HAL] to the model’s tokenizer. We added
the synthetic data along with FAVA and RAGTruth
to the training dataset mixture. In total, the model
was trained with 84 334 training samples. Details
on dataset mixture and training hyperparameters
are presented in the Appendix B.
Retrieval: To retrieve the contexts for hallucina-
tion detection, we used the DuckDuckGo API6. We
simply passed the question as is and collected the
top 20 pages from the search output. Next, we fil-
tered only Wikipedia articles related to the question
from the search output. Finally, we collected and
merged all Wikipedia summaries for the questions.
Soft Labeling: We compare different soft-labeling
strategies:

• Base: simply assign a probability of 1.0 to
each selected span.

• Logit: extract the probability of the opening
[HAL] token in a greedy decoding setup.

• Temp: perform temperature sampling and
set top_k, top_p, num_beams, and a
temperature parameters.

• DBS: perform Diverse Beam Search (Vijayaku-
mar et al., 2016) sampling strategy and ad-
just diversity_penalty, num_beams, and a
num_beam_groups parameters.

5.3 White-box
We use the implementation of uncertainty quan-
tification methods from LM-Polygraph (Fadeeva

4https://hf.co/microsoft/phi-4
5https://hf.co/Qwen/Qwen2.5-7B-Instruct
6https://duckduckgo.com

Method Mode val test

IoU Cor IoU Cor

Black-boxBase SFT 46.78 43.58 53.42 51.41
Black-boxDBS 53.43 49.95 56.56 57.49

White-boxLR - 45.10 39.42 42.80 40.79
White-boxGB 48.29 44.95 45.69 43.67

Merging - 57.40 50.65 58.05 52.88

FAVA - 26.49 15.73 27.43 18.05
ModernBERT SFT 32.87 30.13 33.35 32.55
FactScoreGPT-4o - 22.52 16.65 24.05 20.69

GPT-4o
3-shot

- - 49.07 46.77
Phi-4 - - 33.19 35.43
Qwen2.5-7B-it - - 20.04 20.83

Table 1: Main results. For black-box, we report two
soft-labeling strategies: Base, without any specific soft-
labeling, and DBS, which is based on the span frequency
calculation in the Diverse Beam Search generation out-
put. For white-box methods, LR refers to logistic re-
gression, and GB refers to gradient boosting.

et al., 2023; Vashurin et al., 2024). In our experi-
ments, we consider two training strategies for the
calibration model.
Model-specific training: For each language, a sep-
arate hallucination detection model was trained
using bootstrap-validation with a 70/30 ratio for
train/validation split.
Model-agnostic training: Data from all languages
were combined and a single model was trained us-
ing K-fold cross-validation. This approach yielded
a more stable training process due to reduced data
variance.

6 Results

6.1 Baselines

The results of baseline evaluation are shown in
Table 1. The FAVA model performed with IoU
score at the relatively low level of 26.49 on val-
idation and 27.43 on test, which is significantly
lower than the Black-boxBase level with the same
settings, without any soft labeling strategy. This
shows that the FAVA taxonomy is probably not
complete enough and does not observe many errors
that LLMs generate. The FactScoreGPT-4o shows
relatively low performance, while the trained Mod-
ernBERT achieves an IoU score of 32.87 on the
validation set and 33.35 on the test set.

When considering LLM-based methods, the
GPT-4o and Phi-4 models that were used in 3-shot
mode with randomly sampled examples show the
best results compared to all the baselines.
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6.2 Black-box

First, we perform ablation study of several LLMs
to select the best performing model for hallucina-
tion detection in the Black-box pipeline (Table 7
in Appendix F). In contrast to results obtained in
1-shot setting, Qwen2.5-7B-it outperforms all other
considered LLMs, even 14B Phi-4 model.

Next, we performed a soft-labeling hyperparam-
eter ablation study (Table 5 in Appendix C). We
found that the best IoU is observed with sampling 5
hypotheses using Diverse Beam Search along with
a diversity penalty in the 1.0 level. Considering
Temp, the best IoU is observed with sampling 5
hypotheses and temperature in 0.5.

Finally, we run base and DBS soft-labeling meth-
ods along with the fine-tuned Qwen2.5-7B-it on
both the validation and test parts. On both valida-
tion and test, DBS is a best-performing soft-labeling
strategy. Futhermore, this approach substantially
outperforms all other methods described.

6.3 White-box

Detailed results of the white-box experiments
across various languages and different training
strategies are provided in Table 8 in Appendix G.
Both the model-specific and model-agnostic ap-
proaches demonstrate improvements over the base-
line methods. Notably, the model-agnostic ap-
proach outperforms the model-specific approach
by 3% of IoU and by 11% of Cor, considering only
the languages that are present in both the validation
and test sets.

Additionally, the results indicate that a combina-
tion of all UQ methods yields robust improvements
compared to using any single UQ method. Further-
more, the results with the GB model are slightly
better that with the LR model. The final results,
utilizing the model-agnostic approach trained on
all UQ methods, are presented in Table 1.

6.4 Merging

In our work, we explore various approaches to com-
bine the outputs of white-box and black-box meth-
ods. Specifically, we utilize logistic regression on
predicted spans, gradient boosting with black-box
predictions as features, and a simple weighted av-
erage approach.

Ultimately, the weighted average method, where
the contribution of each method is controlled via pa-
rameters α and β, proved to be the most stable and
effective fusion strategy. Our experiments revealed

that the optimal values of α and β vary significantly
across languages, and selecting them individually
for each language leads to better results. To se-
lect the best hyperparameters, we perform a grid
search on the validation set, selecting α and β that
maximize IoU. A detailed breakdown of the results,
including per-language optimal values, is provided
in Table 2 in Appendix A.

7 Error Analysis

We conducted a detailed error analysis on a subset
of English test examples to pinpoint the most com-
mon failures of our span-detection algorithms. We
found that the vast majority of errors remain factual
misclassifications. Notably, both the white-box and
black-box methods tend to identify spans that are
slightly longer. Although they still correctly cover
the spans, they occasionally truncate entities – e.g.
predicting “Ewald Klein in the 1930” instead of the
distinct facts “chemist”, “Ewald”, “1930s” – a be-
havior more pronounced in the white-box method,
which tends to select larger, statement-level spans
over fine-grained annotations.

On the quantitative side, we measured in-
accuracy in 14 languages (Table 9 in Appendix H),
it evaluates whether the predicted answer includes
the ground truth (Moskvoretskii et al., 2025). In
many cases, the black-box method fully subsumes
the expert spans – yielding higher in-accuracy but
at the cost of over-segmentation. To mitigate both
over- and under-segmentation, we experimented
with two post-processing heuristics: (1) forcing
inclusion or exclusion of partially labeled tokens
and (2) stripping leading/trailing whitespace and
punctuation from predicted spans. Fully including
or excluding partially matched tokens uniformly
reduced average IoU by 1.3% and 1.0% respec-
tively, with no language benefiting. In contrast,
applying only the punctuation cleanup heuristic
increased IoU by 0.3% overall and by 2.2% for
English (moving our English results from 9th to
6th place). These results demonstrate that simple
span-boundary corrections can yield meaningful
gains without retraining the core model.

Conclusion

We have shown that the lightweight white-box ap-
proach produces much better results that compli-
cated baseline methods, even without relying on
external knowledge.

The quality of our synthetic data generation
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pipeline and the effectiveness of white-box ap-
proach is demonstrated by the high scores achieved
by the merged method: our approach was ranked
3rd for four languages and within the top ten for
the rest of the languages.

Limitations

Although synthetic data contains answers from
LLMs of different sizes and architectures, only
GPT-4o was used as a question-answer pairs gener-
ator and as a main annotator of hallucinations. This
means that the annotation is probably not as objec-
tive as it could be if we used several proprietary
models or even a group of crowdsourcers.

Since the uncertainty scores are poorly cali-
brated, we use supervised models in our white-box
approach to both calibrate and combine several UQ
methods. Consequently, the performance of this
approach depends on the quality and size of the
data available for training.
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A Merging Experiments

The hyperparameters were selected using the following grid: α from 0.1 to 1.0 with a step of 0.015,
β = 1 − α, and threshold from 0.05 to 0.65 with a step of 0.03. For each language, we selected the
hyperparameters that maximized the IoU on the validation set. If the objective was to maximize the
product of IoU and Cor on validation, the average IoU on the test set slightly decreased (to 57.66%), but
Cor significantly improved (up to 58.31%). Additionally, the experiments revealed that each language
requires its own set of hyperparameters; otherwise, if hyperparameters are tuned to maximize the average
metrics across all languages, the merging results are worse than those of a single black-box method.

Language α β threshold val test

IoU Cor IoU Cor

ar 0.31 0.69 0.43 65.39 67.72 60.57 57.08
ca 0.47 0.53 0.46 - - 67.27 57.40
cs 0.62 0.38 0.27 - - 47.50 45.77
de 0.34 0.66 0.37 57.32 53.30 57.01 58.26
en 0.50 0.50 0.33 49.95 53.94 50.32 59.34
es 0.63 0.37 0.56 50.49 38.18 43.16 55.20
eu 0.62 0.38 0.33 - - 51.96 45.19
fa 0.69 0.31 0.59 - - 64.17 46.36
fi 0.13 0.87 0.30 58.18 53.57 62.92 55.38
fr 0.41 0.59 0.30 50.24 48.25 55.23 54.94
hi 0.77 0.23 0.49 67.86 58.94 71.19 60.79
it 0.15 0.85 0.37 66.37 52.96 70.38 61.99
sv 0.22 0.78 0.33 60.06 44.16 62.02 46.85
zh 0.13 0.87 0.24 48.14 35.45 48.97 35.70

Mean - - - 57.40 50.65 58.05 52.88

Table 2: Results of hyperparameter tuning for the weighted average of white-box and black-box results.

B Black-box Training Details

The black-box model is trained on a dataset mixture created by combining the synthetic data, FAVA and
RAGTruth datasets. Details about each dataset are shown in Table 3.

Dataset # of training samples

Synthetic data 52 271
FAVA 27 364
RAGTruth 4699

Total 84 334

Table 3: Training dataset mixture details.

LLMs training for the black-box approach was performed on a single 8xA100 node with DeepSpeed
Stage 2 optimization. The global batch size was 32 samples. All models were trained in a fixed setup with
4 epochs and a linear learning rate scheduler. All details on custom hyperparameters are shown in Table 4.

Hyperparameter Value

learning_rate 1e-5
num_train_epochs 4
lr_scheduler_type linear
warmup_ratio 0.3
gradient_accumulation_steps 32
batch_size 1
deepspeed stage 2

Table 4: Black-box training hyperparameters, remaining hyperparameters follow HuggingFace Trainer defaults.
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C Soft Labeling Details

The soft labeling methods ablation for the black-box approach on the validation subset is shown in Table 5.
The DBS approach strongly outperforms the baseline, Logit, and Temp methods. Sampling more

hypotheses, 10 instead of 5, only slightly improves IoU when the diversity penalty is 0.5. However, this
effect is not relevant when the diversity penalty is greater than 0.5. We found that the best IoU is observed
with 5 hypotheses and α = 1.0.

The Temp approach shows quite robust results. Scaling temperature and sampling more hypotheses
negatively affects the results for this soft labeling approach. The best IoU for Temp is 49.19 with 5
hypotheses and a temperature level of 0.5. Baselines

Soft Labeling Method val

IoU Cor

Base 46.78 43.58

Logit 47.00 43.38

DBS n = 5, α = 0.5 52.52 49.54
DBS n = 5, α = 0.75 53.39 50.74
DBS n = 5, α = 1.0 53.43 49.95
DBS n = 10, α = 0.5 53.30 50.59
DBS n = 10, α = 0.75 52.84 47.59
DBS n = 10, α = 1.0 51.53 45.39

Temp n = 5, t = 0.5 49.19 47.01
Temp n = 5, t = 1.0 49.18 46.91
Temp n = 5, t = 1.5 49.18 47.11
Temp n = 10, t = 0.5 48.31 47.62
Temp n = 10, t = 1.0 48.14 47.61
Temp n = 10, t = 1.5 48.07 47.62

Table 5: Ablation on soft labeling methods for Black-box. n stands for num_beams, α for diversity_penalty, t
for temperature.

D Black-box Pipeline Architecture

Figure 2: Black-box pipeline architecture. (1) Using the input question, we retrieve additional context and (2) pass it
along with the question and answer to the fine-tuned LLM. (3) The model then detects and highlights hallucinations.
(4) Finally, we post-process the LLM outputs and perform soft labeling to assign span probabilities.
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E ModernBERT Training Details

As the black-box model, ModernBERT was trained on the full dataset mixture described in Appendix B.
Training was performed on a single A100 40GB GPU. Details on the training hyperparameters are given
in Table 6.

Hyperparameter Value

learning_rate 1e-5
num_train_epochs 15
weight_decay 0.01
gradient_accumulation_steps 40
batch_size 1

Table 6: Encoder training hyperparameters.

F LLM Ablation

We used LLMs of different sizes and architectures for the black-box pipeline (Abdin et al., 2024; Yang
et al., 2024). The results of our comparison are shown in Table 7. We used the Mu-SHROOM validation
subset for ablation. We did not ablate different soft-labeling methods here as the goal of this ablation is
to select the best base LLM for other ablations. Thus, according to our Base soft labeling approach, the
probability of each span is assigned as 1.0. For each LLM, the training hyperparameters and the data set
mixture were the same as described in the Appendix B.

We found that while Phi-4 and Qwen2.5-14B-Instruct are the largest models in our study, they are not
the best performing LLMs in this setting. By averaging the IoU and Cor scores, Qwen2.5-7B-Instruct
LLM outperforms all other models.

Although Qwen2.5-3B-it is the smallest model of the observed ones, it is only slightly inferior to
larger models for French and Italian. For English and Swedish it even surpasses all observed checkpoints.
Overall, its IoU score at the level of 37.89 is close to the IoU score of the best performing Qwen2.5-7B-it.

Also, the 14B model performs slightly better in Spanish, German, French, and Swedish, but yields
significantly to the 7B model in Hindi and Finnish.

Phi-4 shows comparable performance to the 7B and 14B models for German and Swedish. For all other
languages, including English, Phi-4 shows inferior performance.

LLM ar es fr de it hi zh en fi sv Mean

IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor

Phi-4 44.29 13.36 36.07 18.84 29.18 15.97 43.62 19.81 34.58 10.43 9.25 6.09 13.74 -0.58 30.13 13.37 34.02 11.12 44.25 3.83 31.91 11.22
Qwen2.5-3B-it 50.48 53.85 42.69 33.5 36.58 38.18 41.63 45.78 48.95 49.09 12.92 11.77 19.36 10.41 38.61 31.49 38.96 37.03 48.74 24.25 37.89 33.54
Qwen2.5-7B-it 55.68 54.97 46.5 35.24 37.38 41.22 46.09 44.72 49.29 50.14 18.63 15.02 20.64 13.84 36.35 34.27 45.11 42.76 45.01 28.22 40.06 36.04
Qwen2.5-14B-it 61.10 58.81 43.43 38.46 38.91 40.68 46.60 46.32 47.11 48.91 13.58 12.56 26.71 18.90 34.60 33.58 38.53 37.62 45.15 33.79 39.57 36.96

Table 7: LLM ablation in Black-box pipeline. We fine-tuned these LLMs on our dataset mixture including synthetic
data and evaluated using Mu-SHROOM validation subset.
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G White-box Results

The detailed results with the white-box methods are presented in Table 8. These results indicate that
model-agnostic training of the GB model, leveraging all UQ methods, achieves the best average results on
both validation and test datasets.

Additionally, we explore the use of the features extracted from the attention matrices, as proposed
by Vazhentsev et al. (2024). The LR model trained on these features demonstrate the best performance
on several language, such as English and Finnish. However, it is important to note that the number of
extracted features varies across models due to differences in the number of layers and attention heads. As
a result, experiments with this approach are conducted using a model-specific strategy, considering only
the languages presented in the validation set.

Method Scaling method ar es fr de it hi zh en fi cs ca fa eu sv Mean

IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor

val

MTP, TE, CCP LR, specific 42.92 37.88 32.85 34.91 37.99 25.11 44.42 35.63 52.14 41.56 47.13 42.02 47.08 17.25 32.78 31.44 48.45 35.85 - - - - - - - - 58.01 25.97 44.38 32.76
MTP, TE, CCP LR, agnostic 42.37 49.61 27.65 36.15 42.01 31.62 50.33 40.4 56.43 45.21 44.07 43.13 47.33 23.06 29.94 38.83 51.25 42.23 - - - - - - - - 59.64 43.92 45.10 39.42
MTP, TE, CCP GB, specific 46.62 50.80 29.25 38.26 41.91 30.99 47.61 40.08 54.29 42.47 53.31 42.51 47.65 25.59 35.65 31.49 46.79 38.44 - - - - - - - - 57.23 25.99 46.03 36.66
MTP, TE, CCP GB, agnostic 48.54 63.48 30.17 35.87 43.15 37.95 52.35 46.17 60.28 49.19 53.72 48.93 47.75 31.43 33.88 41.19 55.07 47.23 - - - - - - - - 58.01 48.09 48.29 44.95

CCP GB, agnostic 54.34 62.19 31.94 33.01 39.87 32.95 45.82 38.11 56.56 46.41 51.87 44.59 47.13 31.41 32.04 39.19 51.16 41.22 - - - - - - - - 53.15 37.55 46.39 40.66
MTP GB, agnostic 42.04 45.40 29.61 35.81 42.27 33.01 45.43 38.98 57.79 44.96 45.03 40.79 46.94 21.27 32.09 35.15 52.11 40.69 - - - - - - - - 56.55 35.29 44.99 37.13
TE GB, agnostic 49.44 54.41 28.34 34.40 41.43 34.40 50.32 41.20 57.21 47.48 46.00 43.54 47.58 20.21 34.92 35.26 52.30 47.03 - - - - - - - - 56.59 44.19 46.41 40.21

Att. features LR, specific 51.86 48.74 25.74 33.88 40.21 28.77 45.57 42.57 50.55 41.59 50.50 46.47 51.91 30.08 56.75 42.45 56.35 42.60 - - - - - - - - - - 47.71 39.68

test

MTP, TE, CCP LR, specific 56.26 57.51 19.64 37.51 50.64 43.70 37.94 30.78 52.61 52.45 36.31 33.20 48.05 21.13 38.51 37.14 54.71 43.04 - - - - - - - - 53.63 38.05 44.83 39.45
MTP, TE, CCP LR, agnostic 55.78 57.38 20.98 42.07 55.79 47.94 40.58 39.93 52.81 55.29 42.86 44.33 49.01 25.29 38.42 42.48 58.45 48.21 34.05 32.15 35.79 44.17 24.05 18.59 38.72 32.14 51.91 41.03 42.80 40.79
MTP, TE, CCP GB, specific 60.56 57.29 20.61 38.45 53.74 47.94 39.89 36.84 55.05 53.42 42.28 40.09 48.80 29.47 33.41 42.44 55.39 42.47 - - - - - - - - 56.39 38.52 46.61 42.69
MTP, TE, CCP GB, agnostic 60.01 56.72 24.79 43.83 58.61 51.76 44.68 43.03 58.97 57.77 49.28 46.28 49.28 29.60 39.98 45.72 59.31 50.19 37.84 33.46 38.77 48.03 27.47 30.45 36.51 33.21 54.19 41.13 45.69 43.67

CCP GB, agnostic 60.16 57.15 21.37 37.07 55.45 48.04 39.77 39.96 49.87 53.06 37.73 42.73 48.80 31.52 37.44 42.01 55.92 43.29 37.56 26.39 39.31 45.27 25.84 32.71 41.15 31.39 54.87 34.75 43.23 40.38
MTP GB, agnostic 59.92 56.68 16.55 39.77 57.42 49.69 42.02 37.17 53.95 54.93 42.93 43.00 48.37 19.71 38.19 42.72 58.35 46.60 34.56 32.23 35.54 43.81 22.78 16.47 39.74 32.58 52.64 37.35 43.07 39.48
TE GB, agnostic 60.06 56.84 16.39 41.70 58.37 50.85 34.90 36.08 53.48 56.20 41.12 44.40 49.03 19.42 41.85 43.55 58.48 48.01 33.63 31.64 35.74 43.83 22.11 20.36 35.04 32.51 55.42 38.69 42.55 40.29

Att. features LR, specific 42.85 45.76 26.94 41.71 47.46 39.51 49.45 49.22 53.54 52.82 44.04 41.34 46.47 34.03 45.95 49.82 60.30 56.07 - - - - - - - - - - 46.33 45.59

Table 8: Experimental results with various white-box methods. LR refers to logistic regression, and GB refers to
gradient boosting. For the model-specific methods, part of the test set results is missing because these languages
and models were not present in the validation set. The average test set results for the model-specific methods are
based on the less number of languages, as four languages (cs, ca, fa, eu) are missed in the validation set. The table
also includes ablation experiments where only one of the uncertainty quantification methods was retained. The best
performing method is in bold, the second-best is underlined.

H Span-detection Error Analysis

Lang White-box Black-box Merged

FR 60.00 62.67 60.00
ES 32.24 55.26 49.34
HI 41.33 77.33 72.00
AR 54.00 55.33 55.33
CA 51.00 73.00 73.00
ZH 57.33 49.33 74.67
IT 48.00 80.00 82.67
DE 30.67 57.33 66.00
FA 52.00 62.00 58.00
SV 42.18 72.11 74.83
EU 27.27 68.69 66.67
EN 50.00 60.39 51.95
CS 54.00 49.00 54.00
FI 33.33 72.00 80.00

Table 9: Results of the in-accuracy metric across different languages for the proposed span detection methods.
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