Firefly Team at SemEval-2025 Task 8: Question-Answering over Tabular
Data using SQL/Python generation with Closed-Source
Large Language Models

Ho Thuy Nga'? and Ho Thi Thanh Tuyen'»
Le Minh Hung'? and Dang Van Thin'?
'University of Information Technology, Ho Chi Minh City, Vietham
2National University, Ho Chi Minh City, Vietnam
{22520926,22521627} @gm.uit.edu.vn, {hunglm,thindv } @uit.edu.vn

Abstract

In this paper, we describe our official system
of the Firefly team for two main tasks in the
SemEval-2025 Task 8: Question-Answering
over Tabular Data. Our solution employs large
language models (LLMs) to translate natural
language queries into executable code, specif-
ically Python and SQL, which are then used
to generate answers categorized into five pre-
defined types. Our empirical evaluation high-
lights the superiority of Python code generation
over SQL for this challenge. Besides, the ex-
perimental results show that our system has
achieved competitive performance in two sub-
tasks. In Subtask I: Databench QA, where we
rank the Top 9 across datasets of any size. Be-
sides, our solution achieved competitive results
and ranked 5'" place in Subtask II: Databench
QA Lite, where datasets are restricted to a max-
imum of 20 rows.

1 Introduction

The Shared Task 8 (Os’es Grijalba et al., 2025)
aims at building Question-Answering (QA)
systems for tabular data using the DataBench
benchmark (Grijalba et al., 2024), which contains
65 real-world tabular datasets from different
domains, allow to assess distinct sort of questions
related to each data type. This shared task has
two main tasks, including DataBench QA and
DataBench Lite QA. The DataBench QA subtask
requires developing a system that answers ques-
tions using datasets of any size. The DataBench
Lite QA subtask used the sampled version of each
dataset with a maximum of 20 rows per tabular
dataset (DataBench Lite). The dataset involves
questions with answers and their type (including
boolean, number, category, listfnumber], and
list[category]), name of specific columns used
and their types, along with the associated dataset
name. The system developed by the participants
will need to provide an answer which would then
be compared with a gold standard.

In this paper, we propose a system that uses
large language models (LLMs) to solve Shared
Task 8. Our system is based on the GPT models
and a structured query generation approach by
producing either SQL queries or Python code to
answer questions on tabular data. The generated
SQL or Python code is executed on the dataset,
and refines the output to produce the final response.

The rest of the paper is organized as fol-
lows. Section 2 provides the related work. The
system description is presented in Section 3,
followed by evaluation results in Section 1. The
experimental setup and conclusion is discussed in
Section 4 and Section 6, respectively.

2 Related Work

Question-Answering over Tabular Data (QAoTD)
has garnered significant interest due to its broad
applications in structured data retrieval and
decision support systems. Existing approaches
can be broadly categorized into rule-based
methods, transformer-based architectures, and
code-generation techniques, each addressing
different challenges associated with querying
tabular data.

Building on previous research, Vakulenko
and Savenkov (2017) proposed a system that
enables non-technical users to query open datasets
using natural language. Their approach extends
an existing chat-bot interface for metadata-based
search by incorporating content-based retrieval
from tables, allowing users to pose queries
and obtain answers directly from structured
data. Compared to earlier deep learning-based
models, such as Sun et al. (2016), which focus on
cross-table search, and Yin et al. (2016), which
explore learning aggregation operations, this
system offers a more lightweight and user-friendly

1028

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1028-1033
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

solution, reducing computational overhead while
enhancing usability for open data exploration.

To improve numerical reasoning and compo-
sitional query execution, Zhou et al. (2022)
introduced UniRPG, a program synthesis approach
designed for discrete reasoning over both tables
and text. Their method leverages a neural program-
mer to generate executable programs, ensuring
syntactic correctness and improving reliability
in arithmetic computations. Prior research,
such as Cao et al. (2023), explored converting
natural language questions into executable Python
programs, enabling flexible table processing and
API integration. While these approaches enhance
structured reasoning, they remain sensitive to
execution errors and struggle to generalize to
unseen table schemas.

More recently, advances in large-scale pre-
trained language models have significantly
impacted table-based question answering. Deng
et al. (2024) conducted a study assessing the table
reasoning capabilities of large language models
(LLMs) and multimodal LLMs, analyzing their
performance across different prompting techniques
and table formats. Their findings, published in the
Findings of ACL 2024, indicate that while LLMs
exhibit strong generalization abilities, they often
face challenges in numerical reasoning and logical
consistency. Compared to earlier table-based QA
models such as TAPAS (Herzig et al., 2020), which
leverage weak supervision for table parsing or
TAPEX (Liu et al., 2022), which achieves table
pre-training by learning a neural SQL executor on
a synthetic corpus, LLMs offer greater flexibility
but remain prone to hallucinations when dealing
with structured information.

3 System Description

3.1 Approach

The diagram in Figure 1 illustrates our approach
for Subtask I and Subtask II. The system is com-
posed of five main components: Pre-processing,
Select Relevant Columns, Generate Code, Execute
Generated Code and Fixing, and Generate Answer.
Pre-processing involves normalizing raw input
data to improve consistency and quality. The
system then using GPT models to identify relevant
columns and extract sample data to aid code
generation. In the Generate Code stage, relevant

dataset attributes and query context are provided
to the model to generate executable code. This
process follows one of two strategies: generating
Python code for direct data manipulation or SQL
queries for structured database retrieval. The
generated code is then executed in the Execute
Generated Code and Fixing stage to extract the
necessary information from the dataset. Finally, in
the Generate Answer stage, the extracted results
are transformed to align with one of five predefined
answer types. The detailed structure of the system
is described in the following.

Pre-processing Dataset: Pre-processing is
one of the essential components in building
an effective Question-Answering system for
tabular data. In this task, we apply a standardized
pre-processing step that focuses on normalizing
null values to ensure consistency across different
datasets.

Select Relevant Columns: As illustrated in
Figure 1, we leverage the power of GPT models
through designed structured prompts to identify
relevant columns for answering a given question.
To achieve this, we first provide the model with the
full set of column names and the input question.
Specifically, given a dataset with M columns
C = {c1,ca,...,cpr} and an input question @, we
construct a structured prompt that presents both the
column metadata and the question to the language
model. The model then processes this input and
predicts a subset of relevant columns C & C
that are most likely to contain the necessary
information for answering Q).

Once the relevant columns are selected, we
proceed to extract sample data from these columns
to provide additional context for subsequent
stages. The extracted sample data serves as a
representative subset of the information within
the selected columns, helping to enhance the
accuracy of code generation in the later steps. By
leveraging the contextual understanding of large
language models, our approach ensures that both
the selected columns and the extracted sample
data are semantically aligned with the question,
thereby structuring the information effectively for
downstream processing.

Generate Code: Given the input question,
the selected relevant columns from the Select

1029

Select columns

Tabular
data Processing

Extract sample
data

Code Execution

Question —— >

Generate Code

g Result
Answer Generation

Code Fixing

Figure 1: Pipeline for Question-Answering over Tabular Data Using Large Language Models.

Relevant Columns step, and sample data from
these columns, we generate executable code to
retrieve the answer. We formulate a structured
prompt that encapsulates the extracted column
names, representative data samples from each
selected column, and additional context informa-
tion—specifically, the table name for SQL-based
generation or the CSV path for Python-based
generation. Based on this input, we employ
two distinct code generation strategies: one for
generating Python code and another for generating
SQL code. Figure 2 illustrates two examples of
code generation. The first example shows Python
code, while the second demonstrates SQL code.
We designed specific prompts to guide the model
behavior (Appendix A.1). This approach ensures
adaptability in handling different types of data
retrieval and computation tasks efficiently.

Execute Generated Code and Fixing: For
Python-generated code, we execute the generated
script directly on the provided CSV dataset. The
script is designed to process the extracted columns,
perform necessary computations, and return the
relevant answer. Execution is handled within a
controlled environment to ensure correctness and
prevent unintended operations. The output of this
execution serves as the extracted answer to the
input question. For SQL-generated code, we first
convert the CSV file into a structured database
format using SQLite. The extracted columns and
sample data are loaded into an SQLite database,
where the generated SQL query is executed. This
ensures efficient and structured querying over
tabular data. The result of the SQL query is then
returned as the answer to the question.

To maintain execution reliability, we implement
an error-handling mechanism that detects and
addresses failures occurring in either execution
method. However, execution may encounter errors
such as syntax errors or invalid operations. To

handle these issues, the system implements a
two-step fixing strategy: first, capturing the exact
error message along with the code snippet; second,
feeding these into the large language model using
an error-correction prompt. The model then
predicts a corrected version of the code, which
is re-executed iteratively until successful or a
maximum retry limit is reached. This iterative
refinement process enhances robustness and
adaptability, ensuring more accurate and reliable
extraction of answers while minimizing execution
failures.

Generate Answer: The result from the Ex-
ecute Generated Code step is processed to align
with the expected answer type. Based on the
question’s context and extracted data, the output
is transformed into one of the predefined types:
Boolean, Number, Category, List[Number], or
List[Category]. This ensures consistency and
accuracy in answering different types of questions
while preserving the structure of the extracted
information.

3.2 Large Language Models

We utilized two models from the GPT family of
large language models (Kalyan, 2023) in this work.

* GPT-40: GPT-4o0 is an autoregressive omni-
model developed by OpenAl (OpenAl et al.,
2023), capable of handling complex reason-
ing tasks and generating high-quality text re-
sponses efficiently.

e GPT-3.5-turbo: GPT-3.5-turbo, also devel-
oped by OpenAl, is an advanced version of
GPT-3.5 with improved performance in under-
standing natural language and text generation.

4 Experimental Setup

Data and Preprocessing: We utilized the official
development set for system development. As the

1030

Input

Question: Is our average employee older than 35?

Values in column "Age™": [41, 49, 37, 33, 27]

[Column_name: Age

4/\)

Code Prompt

SQL Prompt

age_column = data['Age']
average_age = age_column.mean()
if average_age >35:
print("Our average employee is older than 35")
else:

print("Our average employee is not older than 35")

SELECT AVG("Age") > 35 AS is_older_than 3
FROM "066_IBM_HR"

WHERE "Age" is not null

Figure 2: Examples of Generated Python and SQL Code.

competition rules stipulated, no additional data
was used during the system development process.

Evaluation Metrics: The evaluation metric
for two Subtasks is Accuracy Score between
submission and test gold set. These evaluation
metrics were provided by the task organizers and
are available on GitHub.

Configuration Settings: We use the Ope-
nAl API to access two large language models for
setting up our experiments.

5 Results and Discussion

In this section, we present the official results of
our final submission model for two tasks and the
accuracy results split by question type for each
task in the Task 8 Shared Task competition. We
also compare results with the results from the five
top teams for each task.

Subtask I: DataBench QA Table 1 presents the
performances of our system. Table 2 shows the
performances of our system compared with the
five top teams on Task I. The official results on
CondaBench show that we achieved an accuracy
of 86.40% on the test set (Top 9).

Subtask II: DataBench Lite QA Table 1
presents the results of our submission on Subtask
IL. Table 3 presents the performances of our system
compared with five top teams based on the final
rankings. According to the official results on
CondaBench, we ranked 5" with an accuracy of
86.21% on the test set of this subtask.

Table 1 presents the experimental results ob-
tained using the official evaluation function
provided by the organizers on GitHub. These
results highlight the performance of different
approaches across various question types. Ex-
perimental results show that the Python-based
approach with GPT-40 achieves the highest
accuracy, with 79.69% on DataBench QA and
81.99% on DataBench Lite QA. The model
performs particularly well on Boolean (96.90%
and 95.35%) and Category (87.84%) questions.
The SQL-based approach also demonstrates
stable performance, especially for Category
questions (90.54% in both tasks). Overall, GPT-40
outperforms GPT-3.5-turbo across all metrics,
highlighting its superior ability to handle complex
queries.

However, the system struggles with list-type
questions (list[category] and listinumber]), achiev-
ing only 47.22% and 55.56% accuracy with Python
GPT-40. Additionally, GPT-3.5-turbo performs
significantly worse in Python-based queries,
particularly for Category questions (35.14% and
45.95%). The main cause of low performance
in these types of questions is errors in applying
conditional filters that remove important data
or retain unwanted values. Moreover, errors
in duplicate processing can remove essential
data, leading to inaccurate or incomplete results.
The accuracy across different question types
remains uneven, showing that improvements in list
extraction and numerical reasoning are needed to
enhance overall performance.

1031

Subtask Method boolean category number list[category] listinumber] Average
GPT-3.5-turbo (SQL) 59.69 59.46 52.56 41.67 58.24 54.79

Subtask I GPT-40 (SQL) 73.64 90.54 73.72 59.72 81.32 75.48
GPT-3.5-turbo (Python) 72.09 35.14 66.03 43.06 58.24 58.62
GPT-40 (Python) 96.90 87.84 77.56 47.22 78.02 79.69
GPT-3.5-turbo (SQL) 66.67 70.27 58.33 50.00 61.54 61.49

Subtask II GPT-40 (SQL) 85.27 90.54 80.13 55.56 79.12 79.31
GPT-3.5-turbo (Python) 72.09 45.95 73.72 50.00 75.82 66.48
GPT-40 (Python) 95.35 87.84 80.77 55.56 81.32 81.99

Table 1: Results for Subtasks I and II: Databench and Databenchlite Question-Answering on the test set.

Rank Team Accuracy
Top 1 TeleAl 95.01
Top 2 AILS-NTUA 89.85
Top 3 SRPOL AIS 89.66
Top 4 sonrobok4 89.46
Top 5 langtechdata61 88.12
Ours (Top 9) Firefly 86.40

Table 2: Results of our best system compared with five
top systems for Subtask I: Databench

Rank Team Accuracy
Top 1 TeleAl 92.91
Top 2 AILS-NTUA 88.89
Top 3 langtechdata61 88.70
Top 4 SRPOL AIS 86.59
Ours(Top 5) Firefly 86.21

Table 3: Results of our best system compared with five
top systems for Subtask II: Databenchlite

6 Conclusion

In this paper, we presented a system for Question-
Answering on tabular data in the SemEval-2025
Task 8. Our approach leverages large language
models to generate column descriptions, select rel-
evant columns, and produce executable code to de-
rive final answers. The system efficiently processes
diverse tabular datasets and generates accurate re-
sponses without requiring additional training data.
Our experiments demonstrate competitive perfor-
mance across different datasets in DataBench. For
future work, we plan to enhance our system’s abil-
ity to handle more complex table structures and
improve its accuracy in missing or ambiguous data.
Additionally, exploring better prompting strategies
for large language models could further optimize
system performance.

Acknowledgements

This research was supported by The VNUHCM-
University of Information Technology’s Scientific
Research Support Fund.

References

Yihan Cao, Shuyi Chen, Ryan Liu, Zhiruo Wang, and
Daniel Fried. 2023. Api-assisted code generation
for question answering on varied table structures. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Naihao Deng, Zhenjie Sun, Ruiqi He, Aman Sikka, Yu-
long Chen, Lin Ma, Yue Zhang, and Rada Mihalcea.
2024. Tables as texts or images: Evaluating the table
reasoning ability of llms and mllms. In Findings of
the Association for Computational Linguistics: ACL
2024. Association for Computational Linguistics.

Jorge Osés Grijalba, Luis Alfonso Urefia-Lépez, Euge-
nio Martinez Camara, and Jose Camacho-Collados.
2024. Question answering over tabular data with
databench: A large-scale empirical evaluation of llms.
In Proceedings of LREC-COLING 2024, Turin, Italy.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. Tapas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

Katikapalli Subramanyam Kalyan. 2023. A survey of
gpt-3 family large language models including chatgpt
and gpt-4. arXiv preprint arXiv:2310.12321.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
Tapex: Table pre-training via learning a neural sql
executor. arXiv preprint arXiv:2107.07653.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, and et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

1032

https://aclanthology.org/2023.emnlp-main.897/
https://aclanthology.org/2023.emnlp-main.897/
https://aclanthology.org/2024.findings-acl.23/
https://aclanthology.org/2024.findings-acl.23/
https://aclanthology.org/2024.lrec-main.1179.pdf
https://aclanthology.org/2024.lrec-main.1179.pdf
https://aclanthology.org/2020.acl-main.398/
https://aclanthology.org/2020.acl-main.398/
https://doi.org/10.48550/arXiv.2310.12321
https://doi.org/10.48550/arXiv.2310.12321
https://doi.org/10.48550/arXiv.2310.12321
https://doi.org/10.48550/arXiv.2107.07653
https://doi.org/10.48550/arXiv.2107.07653
https://doi.org/10.48550/arXiv.2303.08774

Jorge Os’es Grijalba, Luis Alfonso Ure na-L’opez,

Prompt Design for SQL Code Generation.

Eugenio Mart’inez C’amara, and Jose Camacho-
Collados. 2025. SemEval-2025 task 8: Question
answering over tabular data. In Proceedings of the
19th International Workshop on Semantic Evalua-
tion (SemEval-2025), Vienna, Austria. Association
for Computational Linguistics.

Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su,
and Xifeng Yan. 2016. Table cell search for question
answering. In Proceedings of the 25th International
Conference on World Wide Web (WWW ’16), pages
771-782, Montréal, Canada. ACM.

Svitlana Vakulenko and Vadim Savenkov. 2017.
Tableqa: Question answering on tabular data. arXiv
preprint, arXiv:1705.06504.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Kao Ben.
2016. Neural enquirer: Learning to query tables in
natural language. In Proceedings of the Workshop on
Human-Computer Question Answering. Association
for Computational Linguistics.

Write an SQL script to extract data related to the
question: {question}

Follow the instruction below:

1. Need to keep the table name in " "

2. If any column name matches a reserved key-
word in SQLite (e.g: Transaction,...), ensure it is
wrapped in double quotes (" ") to avoid syntax
erTors.

3. Do not use DISTINCT unless the question ex-
plicitly requires unique values, such as when it
contains terms like “different value”, “unique”, or
“distinct”.

4. Use ORDER BY column DESC when sorting
in descending order. Use ORDER BY column
ASC when sorting in ascending order.

5. Only provide the SQL query; do not include any
explanations or additional text.

Now write an SQL query to answer the
question: {question} based on the ta-
ble name {table_name}, the columns
used {relevant_col}, and several dif-
ferent values extracted from those columns
{relevant_info}.

Yongwei Zhou, Junwei Bao, Chaoqun Duan, Youzheng
Wu, Xiaodong He, and Tiejun Zhao. 2022. Unirpg:
Unified discrete reasoning over table and text as pro-
gram generation. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

A Appendix

A.1 Prompt Engineering

Prompt Design for Python Code Generation.
Write a Python script to extract data related to the
question: {question}

Do not write anything except the python code.

Follow the instruction below:

1. Reads the CSV file from path
{csv_file_path}
2. The columns used in the data are
{relevant_col}.
3. The columns information are

{relevant_info}, this includes column
name and several different values extracted from
that column (which may or may not be the entire
value in the column).

4. Just print the complete answer sentence based
on the answer of the last question and the question.

1033

https://doi.org/10.1145/2872427.2883080
https://doi.org/10.1145/2872427.2883080
https://arxiv.org/abs/1705.06504
https://doi.org/10.18653/v1/W16-0105
https://doi.org/10.18653/v1/W16-0105
https://aclanthology.org/2022.emnlp-main.508/
https://aclanthology.org/2022.emnlp-main.508/
https://aclanthology.org/2022.emnlp-main.508/

