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Abstract

The emotion recognition task has become in-
creasingly popular as it has a wide range of
applications in many fields, such as mental
health, product management, and population
mood state monitoring. SemEval 2025 Task 11
Track A framed the emotion recognition prob-
lem as a multi-label classification task. This pa-
per presents our proposed system submissions
in the following languages: English, Algerian
and Moroccan Arabic, Brazilian and Mozam-
bican Portuguese, German, Spanish, Nigerian-
Pidgin, Russian, and Swedish. Here, we com-
pare the emotion-detecting abilities of gener-
ative and discriminative pre-trained language
models, exploring multiple approaches, includ-
ing curriculum learning, in-context learning,
and instruction and few-shot fine-tuning. We
also propose an extended architecture method
with a feature fusion technique enriched with
emotion scores and a self-attention mechanism.
We find that BERT-based models fine-tuned on
data of a corresponding language achieve the
best results across multiple languages for multi-
label text-based emotion classification, outper-
forming both baseline and generative models.

1 Introduction

The task of emotion recognition involves identify-
ing emotions in text or speech. Track A of SemEval
2025 Task 11 (Muhammad et al., 2025b) focuses
on multi-label emotion recognition in social me-
dia texts across several languages. Following the
definition of the universal emotions introduced by
Ekman (1992), the task involves classifying the
texts for the following six basic emotions: Anger,
Disgust, Fear, Joy, Sadness, and Surprise. In this
paper, we present our work submitted to the shared
task for the following languages: English, Alge-
rian and Moroccan Arabic, Brazilian and Mozambi-
can Portuguese, German, Spanish, Nigerian-Pidgin,
Russian, and Swedish.

Large language models (LLMs) have achieved
remarkable results on a wide range of applications
(Chang et al., 2024). As these models become in-
creasingly integrated into real-world settings cover-
ing diverse domains, LLMs are expected to exhibit
human-like behaviour for proficient social interac-
tions. This served as a motivation to include LLMs
in our investigated approaches, comparing their
performance to discriminative pre-trained language
models (PLMs). Accordingly, our approaches fall
under two main tasks, Classification and Gener-
ation, as we work with both discriminative and
generative PLMs. We explore a wide range of tech-
niques, including zero- and few-shot prompting, as
well as fine-tuning and few-shot fine-tuning. We
also propose a novel approach to extending the
BERT architecture with feature fusion and self-
attention, incorporating token-level emotion scores
statistically calculated on the train set.

In our conducted experiments, non-causal mod-
els demonstrated superiority over causal ones. We
also observed that imbalanced data has a high im-
pact on a model’s performance, notably biasing
outcomes toward the detection of ‘Fear’ in the En-
glish setup. Our code is available online.1

2 Related Work

Emotion Recognition. Strapparava and Mihal-
cea (2007) and Mohammad et al. (2018) addressed
emotion recognition in the SemEval challenges,
tackling tasks such as affective text exploration,
bridging emotional and sentiment aspects, and in-
ferring speakers’ emotions from tweets. More
recently, Zhang et al. (2023) examined an archi-
tecture with discourse- and speaker-aware mod-
ules within graph attention networks, which outper-
formed the state-of-the-art (SOTA) in the task of
Emotion Recognition in Conversations.

Nag et al. (2023) explored several deep learning

1https://github.com/profii/semeval25_task11
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techniques to address different emotional intelli-
gence (EI) tasks, including emotion recognition.
Zhao et al. (2024) tackled the issue of catastrophic
forgetting in LLMs, which was previously reported
by Luo et al. (2023) when integrating EI.

PLMs have proven to be highly effective on var-
ious NLP benchmarks (Sun et al., 2019; Devlin
et al., 2019; OpenAI, 2023; Nikishina et al., 2023;
Chowdhery et al., 2023; Demidova et al., 2024;
etc.). With respect to the current task, we consid-
ered the following approaches:

Fine-tuning. Recent advances have been made
in fine-tuning approaches by adapting PLMs with
minimal parameter updates. For example, PEFT
(Ding et al., 2023) and LoRA (Hu et al., 2022)
techniques significantly reduce the computational
requirements while maintaining high performance.

In-Context Learning. Zero- and few-shot ICL
offer the advantage of not modifying the model
parameters. Dong et al. (2024)’s survey provides a
taxonomy of ICL that demonstrates various ways
to apply pre-trained language models in NLP tasks.
Brown et al. (2020) highlight the effectiveness of
few-shot ICL reaching SOTA performance.

Few-shot Fine-tuning. Mosbach et al. (2023)
presented a method of few-shot fine-tuning that is
between ICL and full fine-tuning. Their approach
involves using a small number of labelled examples
in the input during the fine-tuning stage (resem-
bling few-shot learning).

Feature Fusion with Self-Attention. The fea-
ture fusion (FF) method implies a combination
of multiple feature representations, such as em-
beddings. Recent works (Yang et al., 2020, 2024)
showed implementations of FF under self-attention
that enhanced model performance in Named Entity
Recognition. Santoso et al. (2021) explored the
combination of self-attention and word-level fea-
tures that improve Speech Emotion Recognition.

3 Methodology

In this section, we describe the system overview by
examining both groups of approaches for classifi-
cation and generation tasks in detail.

3.1 Data

The organizers of the SemEval 2025 Task 11
(Muhammad et al., 2025a) provided 28 datasets
across different languages, taking as resources

news, social media, annotated speeches, transla-
tions from literature, and examples written by na-
tives and augmented with machine-generated con-
tent. To simplify the annotation process, the au-
thors chose the following six labels: Anger, Dis-
gust, Fear, Joy, Sadness, and Surprise. They did not
include Disgust in the English dataset due to the
insufficient number of class elements. In our work,
we only use the training dataset from Muhammad
et al. (2025a) to train our models, while the de-
velopment set is used for evaluation. Table 4 in
Appendix A.1 provides an analysis of the task’s
datasets. As further training data, we also con-
sidered GoEmotions (Demszky et al., 2020) and
MELD (Poria et al., 2019), but early experiments
showed that they did not offer any improvement,
which we believe is because their annotations repre-
sent speakers’ emotions instead of perceived ones.

As one utterance can evoke several emotions, we
analyzed all emotion combinations occurring in the
data. We provide further analysis for English in
Appendix A.1.2, showing emotions co-occurrence.

Preprocessing. The informal nature of the so-
cial media domain presents noisy content such as
hashtags, mentions, emojis, elongated words, infor-
mal abbreviations, and various punctuation styles.
While these elements can help in the expression of
emotions, they can also complicate the tokenization
process. We believe that preprocessing can help
improve the consistency of textual representations
for emotion classification. To clean our data, we
perform the following preprocessing steps: stan-
dardizing similar emojis to a set of basic Ekman
emotions (Anger: ‘:@’, Fear: ‘D:’, Joy: ‘:)’, Sad-
ness: ‘:(’, Surprise: ‘:o’, Neutral: ‘:|’), as well as
removing elements such as URLs, user mentions
and hashtags2. We evaluated the effectiveness of
these steps across a subset of the languages, reveal-
ing a benefit to English only.

3.2 Models

We explore the use of non-causal and causal PLMs,
thus organizing our approaches into two main cate-
gories: Classification and Generative.

3.2.1 Baselines
In the monolingual setup, organizers of Muham-
mad et al. (2025a) experimented with chain-of-
thought prompting on various LLMs (Qwen2.5-

2The preprocessing script is provided in the GitHub repos-
itory: https://github.com/profii/semeval25_task11
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72B, Dolly-v2-12B, Llama-3.3-70B, Mixtral-8x7B,
and DeepSeek-R1-70B) and fine-tuning on mul-
tilingual language models (LaBSE, RemBERT,
XLM-R, mBERT, and mDeBERTa).

3.2.2 Classification Models

We utilize RoBERTa-large for the English setup
(Liu et al., 2019) and XLM-RoBERTa-large for
the other languages (Conneau et al., 2020). These
models are optimized for contextual relationship
understanding and include an attention mechanism,
making them suitable for text classification tasks.

Fine-tuning. We fine-tune non-causal models,
where the hyper-parameter values are specified in
Appendix A.2.1.

Curriculum Learning. Curriculum Learning is
a fine-tuning approach designed to improve model
performance by starting with easier examples and
progressively introducing more complex ones. We
apply this strategy by beginning with neutral utter-
ances, followed by examples containing only one
emotion, and gradually increasing the complexity
to sentences having multiple emotions.

Feature Fusion with Self-Attention. Motivated
by the work of Santoso et al. (2021), we integrate
emotional features to enhance the model’s ability
to capture nuanced emotional contexts and assign
dynamic weights. This extension recognizes that
different tokens hold various levels of emotional
relevance. We apply two transformations to the
model architecture during fine-tuning: additional
two layers (self-attention and linear classifier) and
the token-level feature fusion with emotion scores,
as shown in Figure 1. The self-attention layer takes
as input token-level emotion-weighted embeddings
that are concatenated to the embeddings produced
by the previous layer. The emotion-weighted em-
bedding is equal to the number of emotion classes,
where each element contains an emotion score, rep-
resenting a probability of that emotion being asso-
ciated with that input token. In order to calculate
the emotion scores, we first tokenize the sentences
in the training data using the relevant non-causal
model for each language. For each token, the emo-
tion score is based on the number of occurrences of
that token (e.g. ‘tears’) in sentences with a certain
emotion label (e.g. Fear, Sadness), divided by the
total occurrences of this token across all emotions.3

3Our emotion score is calculated on the training data.

W
e'

re
 s

ti
ll 

to
ge

th
er

.

Emotion Embeddings

Se
lf-

A
tte

nt
io

n

Li
ne

ar
 C

la
ss

ifi
er

0.002

0.001

0.999

A

F

J

Sa

Su

0.001

0.001

PL
M

To
ke

n 
Em

be
dd

in
gs

Figure 1: Scheme of the Feature Fusion with Self-
Attention (FFSA) approach, where ⊕ denotes the con-
catenation operator and A, F, J, Sa, and Su represent
Anger, Fear, Joy, Sadness and Surprise, respectively.

Figure 2 provides an example of an emotion score
mapping.

My       heart   immediately  hurt
A F J Sa Su A F J Sa Su SuSaJFA SuSaJFA

Figure 2: Example of Emotion Score mapping, where
A, F, J, Sa, and Su represent Anger, Fear, Joy, Sadness
and Surprise, respectively.

3.2.3 Generative Models
We utilize the following LLMs: Meta-Llama-3-
8B-Instruct (Llama-3) (Grattafiori et al., 2024),
GPT-4o-mini (OpenAI, 2024), and Qwen2.5-32B-
Instruct (Qwen2.5) (Qwen, 2025). Our choice
of causal models is based on preliminary exper-
iments that we conducted, where these LLMs out-
performed others.4 The superiority of these models
has also been confirmed by Wang et al. (2023),
where they demonstrated both high EI and strong
performance on general tasks.

We explore the use of in-context learning and
fine-tuning. For both approaches, the inference
part consists of generating output and deducing
the emotion. Table 7 in Appendix A.2.2 demon-
strates the hyper-parameters for the inference mode,
where we opted for less creative and more consis-
tent responses. As generative models can provide

4We also experimented with Mistral-7B-v0.1, Qwen2.5-
14B-Instruct, Phi-3-medium-4k-instruct, Meta-Llama-3-8B,
deepseek-ai/deepseek-llm-7b-chat, Gemma-2-9b, Llama-3.1-
8B-Instruct, and Vicuna-7b-v1.5.
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Language Model BERT-F1 XLM-F1 Llama-F1
English RoBERTa-large 78.9 76.5 73.0
Algerian Arabic MarBERT 58.5 46.8 39.3
Moroccan Arabic bert-base-arabic-camelbert-msa 56.3 51.9 34.4
Brazilian Portuguese bert-base-portuguese-cased-large 53.1 53.4 37.9
Mozambican Portuguese bert-base-portuguese-cased-large 54.8 52.0 32.0
German gbert-large 68.2 69.9 42.2
Nigerian-Pidgin - - 58.0 34.5
Russian RuBERT-large 83.9 85.4 49.9
Spanish RoBERTa-BNE-base 77.0 77.2 54.5
Swedish bert-base-swedish-cased 50.8 23.5 37.3

Table 1: Best results on the development set, showing the F1-Macro scores for BERT-based language-specific
models (BERT-F1), XLM-R (XLM-F1), and Llama-3-8B-Instruct (Llama-F1). Best models are bolded.

final responses outside of the given set of emotions,
we apply a post-processing step to map the model
output to the six Ekman emotions, using the GoE-
motions mapping (Demszky et al., 2020) provided
in Table 8 in Appendix A.3.

In-Context Learning. In the context of limited
GPU memory, 8-bit quantization with bitsand-
bytes5 allowed us to experiment with multiple
prompt templates. In Appendix A.4, we demon-
strate the two most effective prompts for English
that we subsequently use throughout all our ICL
experiments, as well as the examples we used for
few-shot learning.6

Instruction Fine-tuning. We perform instruc-
tion fine-tuning on Llama-3. Due to computa-
tional limitations, experiments are conducted with
4-bit quantization and the LoRA adapter. Fine-
tuning hyper-parameters are also specified in Ap-
pendix A.2.2. To achieve higher performance, we
additionally implemented few-shot fine-tuning.

3.3 Evaluation Metrics
We report macro-averaged F1 score, which is the
main metric used for evaluation by the shared task
organizers (Muhammad et al., 2025a). F1-Macro
is defined as the (unweighted) average of F1 scores
calculated separately for each label.

4 Results

For discriminative models, we use BERT-based
language-specific models as well as XLM-R, cov-
ering fine-tuning, FFSA, and CL across all lan-
guages. For generative models, we conduct prelim-
inary experiments on the English language, where
the best setup was found to be using Llama-3 along

5https://huggingface.co/docs/bitsandbytes/
6For all prompt-related experiments, the model was

prompted in English with a language-specific example.

with prompt#1 (see Appendix A.4). In Table 2, we
present the best results across different generative
models for English. Due to resources constraints
for experimenting with other languages, we apply
this best-performing setting across all languages.
Table 1 presents the best results for language-
specific BERT models, XLM-R, and Llama-3 on
the development set for each language. In Ap-
pendix A.5, we elaborate on experimental results
on the English setup.

Model Prompt # F1-Macro
Llama-3 1 73.0
GPT-4o-mini 2 69.8
Qwen2.5 2 69.1

Table 2: Best results on Prompting for the English de-
velopment set, where Llama-3 is Meta-Llama-3-8B-
Instruct, Qwen2.5 - Qwen/Qwen2.5-32B-Instruct.

In Table 3, we present the results on the test set.
We demonstrate a comparison between our results,
the best scores from Muhammad et al. (2025a),
and the highest F1-Macro in competition across
different languages.

Our results show that discriminative models out-
performed Llama-3 across all languages. Among
discriminative models, we find that XLM-R is more
consistent across multiple languages except for
Arabic and Swedish, considering the difference
between XLM-R and language-specific BERTs.

5 Discussion

In order to further understand our experiment re-
sults on the English development set, we anal-
ysed confusion matrices of models with fine-
tuning and Feature Fusion with Self-Attention
(FFSA) approaches (see Figures 7a and 7b in Ap-
pendix A.6.1). We observed that both models are
overfitting by choosing ‘Fear’ in most of the con-
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Language Model Approach Baseline⋆ F1-Macro† BEST‡ ∆

Russian XLM-R-large Fine-tuning 83.8 88.7 90.9 2.2
Mozambican Portuguese portuguese-large Curriculum learning 45.9 50.7 54.8 4.1
Moroccan Arabic camelbert-msa Fine-tuning 52.8 57.8 62.9 5.1
English RoBERTa-large FFSA 70.8 76.2 82.3 6.1
Spanish XLM-R-large Fine-tuning 77.4 77.8 84.9 7.1
Swedish swedish Curriculum learning 52.0 55.3 62.6 7.3
Nigerian-Pidgin XLM-R-large Fine-tuning 55.5 60.0 67.4 7.4
German gbert-large Fine-tuning 64.2 66.0 74.0 8.0
Algerian Arabic MarBERT Fine-tuning 55.8 57.9 66.9 9.0
Brazilian Portuguese portuguese-large FFSA 51.6 54.7 68.3 13.6

Table 3: We report the best results we achieve on the test set across languages. We present the best result of
baselines from Muhammad et al. (2025a) (⋆), our results (†), the highest F1-Macro in competition (‡), and the
difference between the best in competition and our score (∆). We use the following abbreviations: FFSA for
feature fusion with self-attention approach, camelbert-msa for bert-base-arabic-camelbert-msa, portuguese-large
for bert-base-portuguese-cased-large, and swedish for bert-base-swedish-cased.

fusion cases, possibly due to imbalanced data (see
also Figure 4 in Appendix A.1.3). Regarding FFSA,
the additional self-attention layer appears to im-
prove the distinction between Anger, Fear and Joy.
Additionally, the dataset samples demonstrate that
the fine-tuned RoBERTa model does not effectively
distinguish Sadness and Surprise emotions from
others, interpreting them as Anger or Fear and Fear
or Joy, respectively, due to ambiguous cases.

Moreover, a comparison of these two approaches
on F1, Recall, and Precision scores with Statistical
Significance (Berg-Kirkpatrick et al., 2012) shows
a 0.84 P-value, which means that the difference in
the performance of these two models is not statis-
tically significant. However, the FFSA technique
does not require much additional high computa-
tional power, allowing this method to be applied
efficiently in the English setup.

We believe multiple factors could be affecting
the performance of models across languages, in-
cluding data imbalance, sentence length and dataset
size. Mozambican Portuguese and Algerian Ara-
bic demonstrate the lowest results, likely due to
being low-resource languages with relatively small
datasets. In contrast, for Nigerian-Pidgin, despite
typically being a low-resource language, Nigerian-
Pidgin XLM-R performs relatively well. We be-
lieve this could be due to being well-resourced in
this set-up (see Table 4), as well as the prevalence
of English in the language. In terms of sentence
length, Brazilian Portuguese and Swedish contain
longer sentences (on average and at their maxi-
mum lengths), complicating input processing. As
for German, its linguistic similarities to English
suggest strong model performance. However, we
believe models might struggle with longer depen-

dencies and complex sentence structures due to
relatively long sentences.

Regarding error analysis for RoBERTa, Ex-
pected Calibration Error (ECE) of the approaches
of both fine-tuning and fine-tuning with Curriculum
Learning and Data Preprocessing have 8.7% and
8.5% ECE, respectively. This indicates that these
models are well-calibrated but still have miscalibra-
tion. As for the Feature Fusion with Self-Attention
approach, the model is on a threshold with 10.3%
ECE, meaning the model’s confidence levels might
be overconfident or underconfident, compared to
actual outcomes. Comparing selected predictions
of those models in Figures 8-10 in Appendix A.6.2
show that fine-tuned RoBERTa demonstrates some
overconfidence with a high probability of incorrect
labels, particularly when it comes to Fear, possibly
related to a data imbalance.

6 Conclusion

This paper presents our contribution to the
SemEval-2025’s multi-label text-based emotion
recognition task. In our work, we compare the
emotion-detecting abilities of causal and non-
causal models along with investigating multiple
techniques such as curriculum learning, instruc-
tion and few-shot fine-tuning, as well as feature
fusion with emotion scores (FFSA). Fine-tuned
language-specific BERT-based models and XLM-
RoBERTa-large gave the best results across multi-
ple languages, outperforming baseline and genera-
tive models. For future work, we believe an inter-
esting direction would be using data augmentation
to address the lack of perceived emotion detection
datasets. Additionally, we can explore improving
the FFSA method using emotion lexicons.
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Limitations

We acknowledge that our study on generative mod-
els for non-English languages is limited by basing
some decisions solely on the English setup and ap-
plying them to other languages. Ideally, further
studies should be conducted to identify the best ex-
perimental setup for each language. As for the test
phase, we compared the two best approaches from
the development phase on the test set for each se-
lected language to report the final results. Another
limitation is that emotion scores were computed
only on training data samples, which may not fully
capture real-world emotion dependencies.

Ethics Statement

As emotion recognition models heavily depend on
the training data, biases presented in the datasets
can be represented in the fine-tuned model ver-
sion. Moreover, the possibility of misuse remains
a significant concern, as the models could be used
for manipulative purposes, such as generating tar-
geted emotional responses or influencing public
sentiment. We also acknowledge the computa-
tional resources required to work with LLMs, such
as Llama-3, making it less accessible for lower-
resource environments.
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A Appendix

A.1 Data

A.1.1 Cross-lingual analysis
Table 4 provides analytical information across se-
lected languages, indicating small sizes of datasets
and extraordinal cases with long sentences (espe-
cially in Brazilian Portuguese and Swedish data).
This may influence a model’s performance due to
the limited input size of a model.

Language Size Lmax Lmean

English 2768 450 78
Algerian Arabic 901 274 76
Moroccan Arabic 1608 444 77
German 2603 856 219
Nigerian-Pidgin 3728 279 111
Brazilian Portuguese 2226 2665 114
Mozambican Portuguese 1546 147 65
Russian 2679 609 62
Spanish 1996 191 53
Swedish 1187 3476 196

Table 4: Analytical information of training data among
all selected languages. We present the number of sam-
ples per language (Size), as well as the sentence lengths
in terms of the number of characters, showing the mean
and max values across languages.

A.1.2 Emotional Combinations
The heat map in Figure 3 of such combinations dis-
tinctly illustrates co-occurrence rates for English
training data. Some pairs of emotions occur more
frequently than others, as indicated by their higher
probability. This may reflect real-life tendencies,
where the most commonly expressed emotions ap-
pear more often.
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Figure 3: Heat map of pairwise probabilities for English
train set.

English utterances with Neutral and Joy-only
emotions, combinations of (Fear with Sadness),
(Fear with Surprise), and (Fear with both Sadness
and Surprise) demonstrate strong correlations.

A.1.3 Emotion Distribution
In addition, Figure 4, which shows the emotion dis-
tribution, confirms that the overall low probabilities
of combinations involving Anger and Joy illustrate
data imbalance. This may reflect emotional states
that commonly co-occur in social media texts.

Figure 4: Emotion distribution in English Train dataset.

A.2 Hyper-parameters
A.2.1 Non-causal Models
Table 5 presents the tested hyper-parameter ranges.
During experiments, we found the most optimal
set of these hyper-parameters based on model per-
formance. Figure 5 demonstrates the process of
finding the optimal epoch number, as well as ex-
periments with the HuggingFace Trainer7, which
outperformed our custom training function.

Hyper-parameter From To Optimal
Epochs 1 20 10
Batch size 8 32 32
Learning rate 1e-6 3e-5 2e-5
Weight decay 1e-6 5e-6 1e-6

Table 5: Range of tuned hyper-parameters for RoBERTa-
large in English setup.
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Figure 5: The plot of F1-Macro score results over the
number of epochs of RoBERTa-large on the English de-
velopment set using the custom training function (Train)
and HuggingFace Trainer (HFTrainer).

7https://huggingface.co/docs/transformers/
trainer
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A.2.2 Causal Models
In Table 6, the demonstrated LoRA hyper-
parameters allow us to regularize reducing memory
usage by freezing most model weights and adapting
all linear layers in a model.

Hyper-parameter Value
LoRA α 16
dropout 0.1
r 64
bias ’none’
target modules "all-linear"

Table 6: LoRA hyper-parameters for fine-tuning Llama-
3-8B-Instruct in English setup.

During the inference process, we use certain
generation parameters, shown in Table 7, for both
fine-tuning and in-context learning approaches to
control the model output. These parameters reduce
creativity to ensure the model generates consistent
responses while maintaining emotional context.

Parameter Value
max_new_tokens 50
do_sample True
temperature 0.1
top_p 0.6

Table 7: Parameters for the inference of Llama-3-8B-
Instruct in English setup.

A.3 Postprocessing

To align emotions from the model’s responses ac-
cording to the basic six emotions, we use emotion
mapping from Table 8. For the English setting, we
map Disgust to Fear emotion.

Emotion Variations
Anger Anger, Annoyance, Disapproval
Disgust Disgust
Fear Fear, Nervousness
Joy Joy, Amusement, Approval, Excitement,

Gratitude, Love, Optimism, Relief, Pride,
Admiration, Desire, Caring

Sadness Sadness, Disappointment, Embarrassment,
Grief, Remorse

Surprise Surprise, Realization, Confusion, Curiosity

Table 8: Emotion mapping from Demszky et al. (2020).

A.4 In-Context Learning.

As shown in Figure 6, our prompt templates have an
instruction format where we utilize special tokens
for structuring. Also, we used complex and diverse

examples from the training dataset presented in
Table 9 in a few-shot setup.

# Utterance Labels
1 "The cop tells him to have a

nice day and walks away."
Anger, Joy, Surprise

2 "About 2 weeks ago I
thought I pulled a muscle in
my calf."

Fear, Sadness

3 "I got to babysit my grand-
son but my back hurt the
next day."

Joy, Sadness

Table 9: Selected representative samples for few-shot
learning from the English Train dataset.

A.5 English Deep-dive Experiments

In Table 10, we provide results on all approaches in
the English setup conducted using RoBERTa-large
and Llama-3, where RoBERTa with a combination
of fine-tuning and curriculum learning on prepro-
cessed data shows the highest 81 F1-score.

Model Approach F1-Macro
RoBERTa Preprocessing + CL 81.0
RoBERTa FFSA 80.4
RoBERTa CL 79.9
RoBERTa Preprocessing 79.0
RoBERTa Fine-tune 78.9
Llama-3 Prompt 73.0
Llama-3 Few-shot fine-tune 68.5
Llama-3 Instruction fine-tune 64.3

Table 10: Best results on the English development set,
where RoBERTa - RoBERTa-large, Llama-3 is Meta-
Llama-3-8B-Instruct, FFSA - feature fusion with self-
attention, CL - curriculum learning.

We found that preprocessing steps benefit the
RoBERTa, which is optimized for clean and struc-
tured input such as Wikipedia8 and BookCorpus
(Zhu et al., 2015). In contrast, Llama-3 did not
show better results on the preprocessed data com-
pared to the original dataset. As a decoder, Llama-3
appears to be more robust to raw text variations be-
cause they are trained to handle natural instances.

A.6 Result Analysis

A.6.1 Confusion Matrices
For the English dataset, Figures 7a and 7b demon-
strate confusion matrices of the two effective ap-
proaches, such as fine-tuning and feature fusion
with self-attention. They represent a comparison
between predicted and true labels, indicating a low

8https://dumps.wikimedia.org/
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### Input:
My friend told me: "<Utterance>".
What emotions from the list [Anger, Fear, Joy,
Sadness, Surprise] did my friend convey to me
in their own words?

### Output:
Emotions:

### Input:
Your task is to predict the likely emotion(s) most people will think the
speaker may be feeling in this speech: <Utterance>
[End of the speech]
Determine the most possible emotions from this list [Anger, Fear, Joy,
Sadness, Surprise, Neutral]. If there are several emotions, write them
separated by commas.
### Output:
Emotion(s):

1 2

Figure 6: Prompt templates for the English setup.
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(a) Fine-tuning approach
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(b) Feature Fusion with Self-Attention

Figure 7: Confusion Matrices of RoBERTa for the English development set.

number of samples with Sadness and Surprise la-
bels in the development set as well.

A.6.2 Error Analysis

Figures 8, 9, and 10 represent predicted probabili-
ties for each label on the English development set.
Here, high values indicated with blue colour re-
flect the overconfidence of a model, whereas low
probabilities with red colour represent the under-
confident model. Both of these cases indicate the
need for calibration.
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Figure 8: Examples of predicted probabilities of the
fine-tuned RoBERTa on the development set (Anger (A),
Fear (F), Joy (J), Sadness (Sa), Surprise (Su)).
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Figure 9: Examples of predicted probabilities of the fine-
tuned RoBERTa with Feature Fusion and Self-Attention
on the development set (Anger (A), Fear (F), Joy (J),
Sadness (Sa), Surprise (Su)).
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Figure 10: Examples of predicted probabilities of the
fine-tuned RoBERTa with Curriculum Learning and
Data Preprocessing (Anger (A), Fear (F), Joy (J), Sad-
ness (Sa), Surprise (Su)).

1014


