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Abstract

This paper reports on the performance of
SRCB’s system in SemEval-2025 Task 9: The
Food Hazard Detection Challenge. We de-
velop a system in the form of a pipeline con-
sisting of two parts: 1. Candidate Recall Mod-
ule, which selects the most probable correct
labels from a large number of labels based
on the BERT model; 2. LLM Prediction
Module, which is used to generate the final
prediction based on Large Language Mod-
els(LLM). Additionally, to address the issue
of long prompts caused by an excessive num-
ber of labels, we propose a model architecture
using the external attention mechanism to re-
duce resource consumption and improve per-
formance. Our submission achieves the first
place with the macro-F1 score of 54.73 on
Sub-Task 2 and the third place with the macro-
F1 score of 80.39 on Sub-Task 1. Our sys-
tem is released at https://github.com/
Doraxgui/Document_Attention.

1 Introduction

SemEval is a series of international research work-
shops aimed at advancing the field of natural lan-
guage processing(NLP), with a particular focus on
semantic analysis techniques and the creation of
high-quality annotated datasets to address various
complex challenges in natural language seman-
tics. Each year, the workshop organizes a series of
shared tasks, offering a platform for the presenta-
tion and comparative evaluation of computational
semantic analysis systems developed by different
teams. The Food Hazard Detection Task (Randl
et al., 2025) comprises two sub-tasks: Sub-Task 1
focuses on classifying the type of hazard and prod-
uct, while Sub-Task 2 aims to classify the exact
hazard and product.

The challenges of this task include: 1) a heavily
imbalanced class distribution, and 2) a large num-
ber of labels: 10 types of hazards and 22 types of

products in Sub-Task 1, and 128 exact hazards and
1,142 exact products in Sub-Task 2. Construct-
ing prompts with such a large number of labels for
LLM-based response generation leads to high re-
source consumption and degraded performance.

For challenge 1, our proposed solution em-
ploys Large Language Models(LLMs). As LLMs
demonstrate strong performance on data augmen-
tation (Cai et al., 2023), particularly for imbal-
anced data. Therefore, we use LLM, specifically
Qwen2.5-72B-Instruct (Yang et al., 2024), to per-
form data augmentation and deal with the imbal-
anced class distribution. For labels with limited
training samples, we prompt the LLM to generate
new samples based on the content of these sam-
ples, the semantic meaning of the label, and the
text format of a randomly selected training sam-
ple. For challenge 2, we propose a novel model ar-
chitecture named the External Attention Mech-
anism, which is used to combine input embed-
dings with label embeddings to inject label infor-
mation into the input, as opposed to the conven-
tional approach of concatenating label information
in text form and relying on the self-attention mech-
anism. This innovative structure treats input and
labels as two separate parts, reducing the length of
prompts and leading to significant resource sav-
ings and performance improvements.

Our system is a pipeline consisting of two parts:
Candidate Recall Module and LLLM Prediction
Module. The Candidate Recall Module is mainly
composed of a BERT model with a classifier
added at the top, which is used to filter all labels
and keep those candidate labels which have high
probability of correctness. The purpose of this
module is to reduce the number of all candidate
labels and help subsequent modules reduce error
options and improve performance. The LLM Pre-
diction Module first obtains the hidden states of
the input and the hidden states of all labels, and
then aligns them through the External Attention
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Mechanism (alternatively called Label Attention
Module) to generate a new representation. Finally,
the system uses this new representation to predict
hazards and products in the form of Next Token
Prediction task. The purpose of this module is to
allow the hidden states of the input to calculate the
attention mechanism with labels externally, rather
than splicing labels directly into the input in the
form of text and using Self-Attention Mechanism
of LLM. In this way, the length of the LLM’s in-
put prompts can be significantly reduced. More-
over, in the External Attention Mechanism, all la-
bels are treated equally, and the potential impact
of the labels’ order will not be introduced, as the
hidden states of labels are calculated in parallel.

2 Background

The Food Hazard Detection Corpus, introduced
in (Randl et al., 2025), includes the professional
manually labeled titles and full texts on food re-
call collected from official food agency websites,
and the language is English. Figure 1 shows an
example of training data, our analysis reveals that
relying solely on the title or text results in incom-
plete information extraction. Therefore, we com-
bine both features to enhance the performance of
the models.

(Edwards and Camacho-Collados, 2024) states
that optimizing the top-layer classifier is ineffec-
tive for imbalanced class distribution. (Radford
et al., 2019) introduces that the text generation
mode based on Autoregressive LLM can be used
as a better alternative method. (Plaza-del Arco
etal., 2023) claims that LLM can adapt to different
tasks without a large number of training samples
due to their ability of understanding natural lan-
guage instructions. Based on these studies, we fo-
cus mainly on LLM instruction tuning in our sys-
tem, finetuning LLM to predict hazards and prod-
ucts.

3 Data

3.1 Data Processing

Our system concatenates the title and text into a
single text format, followed by data cleaning. The
cleaning process includes handling spaces and line
breaks, removing duplicate natural segments, and
converting characters into lowercase. Addition-
ally, the system truncates the cleaned data to a
specified maximum token length. For the Candi-
date Recall Module, the maximum token length is

set to 512, while for the LLM Prediction Module,
it is set to 1,024 (more than 90% of the training
data tokens fall within this limit).

3.2 Data Augmentation

To address the class imbalance problem, we refer
to the oversampling technique (Gosain and Sar-
dana, 2017). For labels with fewer than 50 training
samples (a threshold defined by ourselves), we use
LLM, specifically the Qwen2.5-72B-Instruct, for
data augmentation. Given a sample, we instruct
the LLM to generate a new sample by combining
the meaning of the given sample, the label of the
given sample, and the writing style of a randomly
selected sample from the training data. An ex-
ample of our data augmentation is provided in A.
Compared to repeated oversampling, this method
is better aligned with the overall data distribution
and enhances diversity.

4 System Description

For each classification task (including the clas-
sification of 1.type of hazard, 2.type of product,
3.exact hazard, 4.exact product), we use a unified
pipeline consisting of two modules: Candidate
Recall Module and LLLM Prediction Module.

4.1 Candidate Recall Module

Our preliminary classification experiments with
RoBERTa-base (Liu et al., 2019) indicate that
while the macro-F1 score of the model is subopti-
mal, it achieves an impressive Recall score of over
95 for each label. This suggests that, given a sam-
ple, the BERT-like model will predict some candi-
date labels. These candidate labels: 1.always con-
tain the gold label; 2.are much less than all labels,
especially for Sub-Task 2, thereby mitigating the
challenges posed by the large number of labels. In
order to make full use of this feature, we add the
Candidate Recall Module to the front of the LLM
Prediction Module.

In the Candidate Recall Module, we adopt the
one-vs-all approach (Galar et al., 2011), construct-
ing a binary classifier on the top of BERT(Kenton
and Toutanova, 2019) architecture for each label
to predict the probability of a sample belonging
to that label. For instance, we construct 128 clas-
sifiers for Sub-Task 2’s exact hazards and 1,142
classifiers for Sub-Task 2’s exact products. In our
system, labels predicted by the classifier with a
probability greater than 50% will be considered as
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Figure 1: Data sample

candidate labels. During training, negative sam-
ples are randomly selected from other labels in the
training data. The Candidate Recall Module out-
puts a set of candidate labels. Compared to consid-
ering all labels, this approach significantly reduces
the label space while maintaining a high probabil-
ity of including gold labels.

4.2 LLM Prediction Module

In the LLM Prediction Module, candidate labels
are incorporated into the processed data in the
form of text. And our system needs to select a
LLM as Reference LLM and another LLM as
Target LLM. Reference LLM is used to process
all labels, and Target LLM is used to be finetuned
to process the input and generate the final predic-
tion.

As depicted in Figure 2, the LLM Prediction
Module is comprised of two modules: Label Em-
bedding Generation Module and Label Atten-
tion Module. The Label Embedding Generation
Module is used to generate the embeddings for all
labels using Reference LLLM, which can be consid-
ered as using Reference LLM to understand and
generate the meaning of all labels. The Label At-
tention Module is designed to integrate the em-
beddings of processed data generated by Target
LLM and the embeddings of all labels generated
by Reference LLM. This module aligns the em-
beddings from Target LLM with those from Ref-
erence LLM, injecting all label information into
the embeddings derived from Target LLM.

Due to the large number of labels, construct-
ing prompts as a multiple choice task, where the
LLM selects an option from a list candidate labels,
is infeasible. Instead, we use External Attention
Mechanism (alternatively called Label Attention
Model) to combine the information of all labels
while keeping the prompts concise, and we for-
mulate the task as a Next Token Prediction task,
where the LLM directly generates the label con-
tent. After instruction tuning, LLLM can generate
responses that can be parsed simply and mapped

to those labels. Moreover, our designed structure
is more suitable for traditional Next Token Predic-
tion task, rather than the classification task.

4.2.1 Label Embedding Generation Module

Reference LLM generates embeddings (these em-
beddings are the hidden states which are used to
map the entire LLM token vocabulary) for each
token in all labels, which will be precomputed and
stored to avoid real-time computation. The dimen-
sion of the hidden states (embeddings) would be
(Length, Size), where Length is the number of to-
kens in the label, and Size is the size of hidden
states. The hidden states of all labels are con-
catenated to form the Reference, with dimensions
(Number, MaxLength, Size), where Number is
the total number of labels, MaxLength is the max-
imum token count across all labels, and Size is the
size of hidden states. Zero-padding is applied for
labels with fewer than MaxLength tokens.

For instance, for the exact hazards classification
of Sub-Task 2, there are 128 labels, assuming that
there are 5 tokens in each label. Input all the con-
tent of labels into Reference LLM and it will gen-
erate the Reference with the dimension of (128, 5,
Size), where Size is the size of the hidden states.
Reference will be stored locally for further call-
ing, it contains hidden states (embeddings) of all
tokens for all labels in one classification task.

The parameters of Reference LLM are frozen
and the Reference LLM does not participate in
training or inference, only the Reference will.
And we choose Qwen2.5-14B-Base (Yang et al.,
2024) as the Reference LLM.

This module aims to generate the understanding
for all labels, which is stored as Reference.

4.2.2 Label Attention Module

Given the processed data added with candidate la-
bels, Target LLM generates its embeddings (the
hidden states which are used to map the entire
LLM token vocabulary), named as Query. The di-
mension of Query is (QueryLength, Size), where
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Figure 2: LLM Prediction Module

the QueryLength is the number of tokens in the
processed data and Size is the size of hidden states.

For instance, if one processed data has 100
tokens, the dimension of Query would be (100,
Size), where Size is the size of hidden states.

The parameters of Target LLM and the parame-
ters in Label Attention Module need to be trained
in training process. We choose Qwen2.5-14B-
Base as the Target LLM (the same as the Refer-
ence LLM).

For alignment between Query and Reference,
we refer to the classic attention mechanism
(Vaswani et al., 2017), treating Query as queries
(Q) and Reference as keys (K) and values (V). We
add a feedforward neural network (FFN) to each
of them. In multi-head attention part, we set the
number of attention heads to 12 and use the clas-
sic algorithm of attention mechanism as follow:

QK"
Vi

where Q is the result of FFN on Query and K,
V are the results of FFN on Reference. dy, is the
dimension of K.

The output of multi-head attention exhibits sig-
nificant deviation from the original Target LLM
embeddings, which hinders model convergence if
used directly in subsequent computations. Conse-
quently, to reduce the burden of model training,
we incorporate the embedding generated by Tar-
get LLM (Query) into the output of multi-head at-
tention via a residual connection (He et al., 2016),
followed by layer normalization (Ba et al., 2016)
(the add&norm block). This approach consis-

oo

attention = Softmaz(

tently demonstrates significant performance im-
provements. Next, we simulate the structure of
the Attention Mechanism from Transformers by
incorporating an FFN, a residual connection fol-
lowed by layer normalization. The Label Atten-
tion Module will output a new hidden state that
has the same dimension with Query.

During finetuning, we define the task objective
as Next Token Prediction using the new hidden
state of the output, rather than directly linear clas-
sification because text generation, through its in-
herent semantic understanding, can more effec-
tively mitigate the impact of imbalanced class dis-
tribution. Specifically, when constructing the pro-
cessed data, we add its gold label to the end of the
data in the form of text. Because of the unidirec-
tional attention mechanism of the decoder struc-
ture of LLM, it will not influence the calculation of
External Attention Mechanism mentioned before.
We add a linear layer to map the result embed-
dings combined by Query and Reference into the
vocabulary space of LLM to predict the tokens of
the gold label. When finetuning with the task ob-
jective of Next Token Prediction, we mask whole
processed data except for the tokens of gold label
we added at the end of the data, aiming to finetune
the model only on the label prediction.

Furthermore, the Label Attention Module can
resolve with the influence caused by the sequence
of options. For instance, prompt: Which one is
better, A or B? and prompt: Which one is bet-
ter; B or A? generally have different answers, be-
cause of the inherent mechanism of LLM. How-
ever, the Label Attention Module addresses this is-
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sue through matrix calculation. Unlike traditional
approaches that rely on position embeddings, the
matrix-based mechanism in the Label Attention
Module does not involve explicit positional infor-
mation, which treats each option fairly.

5 Experimental Setup

5.1 Data Splitting

For the Candidate Recall Module, we employ a
5-fold cross-validation, using 4 folds for train-
ing and the remaining fold for validation. For
the LLM Prediction Module, due to the comput-
ing resource requirements (e.g. GPU memory and
training time), we directly use the entire training
dataset for training and the actual validation set for
evaluation. Unlike smaller models such as BERT,
LLM is less prone to overfitting during text gener-
ation tasks, which justifies this approach.

5.2 Hyperparameters

For the Candidate Recall Module, we select
RoBERTa-base and DeBERTaV3-base (He et al.,
2021) as base models. The learning rate is set to
le-5 and the batch size is set to 4 with 4 nega-
tive samples. We use the AdamW optimizer and
employ early stopping to prevent overfitting. For
the LLM Prediction Module, we select Qwen2.5-
14B-Base as the base model. The learning rate
is set to 7e-6 and the effective batch size is 64
(achieved through gradient accumulation). We use
the AdamW optimizer and train for 3 epochs.

5.3 Evaluation Measures

For Sub-Task 1, the measure is the average macro-
F1 score of the type of hazard and product, which
focuses more on the part of hazard. For Sub-Task
2, the measure calculates the average macro-F1
score of the exact of hazard and product, which
also focuses on the part of hazard. In our sys-
tem, the Candidate Recall Module is evaluated us-
ing the Recall score, which measures the ability to
recall gold candidate label, counting whether the
gold label is among the predicted candidate labels.
The LLM Prediction Module is evaluated using
the macro-F1 score for both hazard and product.

6 Results

6.1 Experiment Results

Candidate Recall Module The validation re-
sults on the cross-validation set are illustrated in

Table 1, it indicates the average score of 5-fold
cross-validation.

Both RoBERTa-base and DeBERTaV3-base
achieve high Recall scores, exceeding 95,
with DeBERTaV3-base slightly outperforming
RoBERTa-base.

LLM Prediction Module The validation re-
sults on the actual validation set are illustrated
in Table 2. All methods involve LLM predict-
ing labels through text generation, differing in
prompt construction and model structure. Method
LLM inputs processed data without any labels
into LLM. Method LLM+AL constructs prompts
with processed data and all candidate labels.
Method LLM+FL uses processed data and filtered
candidate labels from Candidate Recall Module.
Method LLM+FL+LPM incorporates LLM Pre-
diction Module with processed data and filtered
candidate labels.

Each value represents the macro-F1 score for
each classification task, and the time column in-
dicates the time consumption in hours. The rea-
son why different methods show huge different
time consumption is that some methods do not
need a lot of memory, thus we increase their batch
size and decrease their gradient accumulation dur-
ing training. Memory consumption mainly de-
pends on the length of prompt, therefore only the
time consumption of Sub-Task 2 is evaluated (total
amount of time consumption on exact hazard and
exact product), as the time consumption of Sub-
Task 1 is approximately the same.

Compared to LLM and LLM+AL, LLM+FL
shows improvements in most tasks. With LPM,
LLM+FL+LPM further enhances performance.
Both using all labels, the time consumption of
LLM+FLA+LPM reduces compared to LLM+AL.

6.2 Test Results

We employ the majority voting approach for
model ensemble, the differences between candi-
date models include adjustments to the LLM Pre-
diction Module’s structure, variations in the types
of LLM and changes in Candidate Recall Mod-
ule’s models, and so on.

Our system achieves the highest macro-F1 score
for Sub-Task 2 and a high score for Sub-Task 1.
Table 2 details our result on the test set, show-
ing performance consistent with the validation set
except for the type of hazard, indicating potential
overfitting.
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Sub-Task 1 Sub-Task 2
PLM type of hazard type of product | exact hazard exact product
RoBERTa-base 97.89 95.71 98.23 96.40
DeBERTaV3-base 98.70 96.67 98.80 97.46

Table 1: The recall scores on average validation (5-folds) set. PLM indicates Pretrained Language Model

Validation Sub-Task 1 Sub-Task 2
Method type of hazard type of product | exact hazard exact product time
LLM 80.47 75.19 68.52 38.14 2
LLM + AL 83.82 74.50 64.97 38.11 9
LLM + FL 82.44 81.78 67.64 39.64 4
LLM + FL + LPM 89.81 82.59 69.62 40.39 55
Test Sub-Task 1 Sub-Task 2
Method type of hazard type of product | exact hazard exact product time
LLM + FL + LPM 78.51 82.27 67.98 41.41 -

Table 2: The macro-F1 scores on validation and test set. LLM presents SFTed Qwen2.5-14B-Base. AL presents
inputting all labels into prompt. FL presents inputting filtered labels from Candidate Recall Module into prompt.

LPM presents LLM Prediction Module

6.3 Further Work

Several areas warrant further exploration and im-
provement: a) Optimizing the embedding genera-
tion method in the Label Embedding Generation
Module. b) Using a different or larger Reference
LLM in the LLM Prediction Module, with varying
FFN sizes for mapping. c¢) Exploring the full use
of the Label Attention Module by increasing the
number of attention layers or adjusting the struc-
ture, and so on. In the future, we plan to ex-
plore and improve the LLM Prediction Module to
achieve a more robust and efficient structure.

7 Conclusion

In this work, we propose a system consisting of the
Candidate Recall Module and the Label Predic-
tion Module. We identify that the primary cause of
high training time consumption is the long prompt.
To address this, we design the Candidate Recall
Module to reduce the length of prompt in terms
of system structure. And we design the Label
Prediction Module to further minimize the impact
of the prompt length using the External Atten-
tion Mechanism in terms of algorithm. Addition-
ally, the Label Prediction Module also addresses
the problem of the option sequence. With the
help of other techniques like data augmentation
and pipeline optimization, our system achieves the
highest score for Sub-Task 2, and a competitive

score for Sub-Task 1. For future work, we plan
to explore advanced architectures to optimize the
LLM Prediction Module.

8 Limitation

The LLM Prediction Module enhances perfor-
mance and speed, but increases storage consump-
tion. The results of the Label Embedding Gener-
ation Module are either generated in real time us-
ing the Reference LLM or pregenerated offline and
stored locally, both imposing memory or storage
burdens. Additionally, the LLM Prediction Mod-
ule takes more time to train.
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A Data Augmentation

Figure 3 presents the prompt we used to instruct
LLM to generate new samples, and Figure 4 is
an example of training data that needs to be aug-
mented, while Figure 5 is a random sample se-
lected from the training data. Figure 6 presents
the data augmentation result, which has the simi-
lar format as Random sample and the same mean-
ing as the Target sample, we regard the Result as
augmented data samples.

Prompt

<Reference Content=
<Title=

Target Title

</Title=

<Text=

Target Text

</Text=

hazard: Target Label
</Reference Content >

<Reference Style>
<Title>
Random_Title
</Title>

<Text>
Random_Texrt
</Text>

hazard: Random Label
</Reference Style=

Please refer to the meaning of hazard in <Reference
Content> and the writing format in <Reference Style>
to create a new document for antibiotics, vet drugs,
which should be different from <Reference Content>.

Figure 3: Prompt for data augmentation

Target sample

Target Title:
Recall Notification: FSIS-026-94

Target Text:
Case Number: 026-94
Date Opened: 07/12/1994
Date Closed: 09/19/1994

Recall Class: N

Press Release (Y/N): N

Domestic Est. Number: N/A
Name: MILI QUALITY FOODS

Imported Product (Y/N): Y

Foreign Estab. Number: 47

City: ASHRAT

State: F

Country: ISRAEL

Product: CHICKEN BREAST, COOKED

Problem: DRUG

Description: SULFADIMETHOXINE

Total Pounds Recalled: 8,260

Pounds Recovered: 0

Target Label:
antibiotics, vet drugs

Figure 4: Target sample
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Random sample

Random_Title
Jindi Cheese — potential microbial contamination
(Listeria spp) — 18 January 2013

Random Text:

Page Content Lactalis Jindi Pty Ltd has recalled the
following product nationally due to potential microbial
contamination (Listeria spp). Date notified to FSANZ
18/01/2013 Food type: Dairy products Product brand
names: Aida Valley Blue Cow Coles Finest Dynasty
Emporium Enterprize G&K Harris Farm International
Jindi Jindi Reserve Kenilworth Kingaroy Old Telegraph
Road Raw Materials Siena Tomewin Farm Tomme Farm
Top Paddock Wattle Valley Willow Grove Package
description and size: Various sizes Various packages foil
wrap - gold and silver, shrink wrapped, cardboard box,
white paper wrapped Date marking: Various Best
Before dates Country of origin: Australia Reason for
recall: potential microbial contamination (Listeria spp)
Consumer advice: Consumers should not eat these
products. Any consumers concerned about their health
should seek medical advice Contact: Lactalis Jindi Pty
Ltd 1800 680 175 Further information Jindi praduct
images (zip file 1105kb) Jindi full product list {(updated
22 January 2013) Food recall on soft cheese - media
release Related links:

Random_Label:
microbiological contamination

Figure 5: Random sample

Result

<Title>

Mili Quality Foods — Potential Antibiotic Contamination
(Sulfadimethoxine) — 12 July 1994

</Title>

<Text>

Page Content Mili Quality Foods has recalled the
following product due to potential antibiotic
contamination (Sulfadimethoxine). Date notified to FSIS:
12/07/1994 Food type: Poultry Product brand name
Mili Quality Foods Chicken Breast Package description
and size: Various sizes, typically 5-10 Ib (2.27-4.54 kg)
packages Date marking: Various Best Before dates
Country of origin: Israel Reason for recall: potential
antibiotic contamination (Sulfadimethoxine) Consumer
advice: Consumers should not consume these products
Any consumers who have experienced adverse
reactions after consuming the product should seek
medical advice. Contact: Mili Quality Foods Customer
Service 1-800-123-4567 Further information Recall
details and product images (zip file 500kb) Related links:
</Text>

hazard: antibicftics, vet drugs

Figure 6: Result
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