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Abstract

We propose a BERT-based hierarchical text clas-
sification framework to address the challenges of
training multi-level multi-class text classification
task. As part of the SemEval-2025 Task 10 chal-
lenge (Subtask 2), the framework performs fine-
grained text classification by training dedicated
sub-category classifiers for each top-level category.
Experimental results demonstrate the feasibility of
the proposed approach for such a task.

1 Introduction

With the rapid development of Natural Language
Processing (NLP), extracting narratives from on-
line news has attracted widespread attention in both
academia and industry (Piskorski and Yangarber,
2013). A deep understanding of how entities are
presented in news articles and the identification of
underlying narratives are crucial for media analy-
sis, misinformation detection, and socio-political
research (Vosoughi et al., 2018).

This study focuses on the cross-lingual, multi-
label, and multi-category document classification
task, which involves automatically identifying and
assigning narrative labels and sub-narrative labels
to news articles based on a two-level narrative label-
ing system within a specific domain. Specifically,
each article may contain one or more narrative la-
bels, with each narrative further subdivided into
sub-narrative labels. The main objective of this
study is to accurately assign all applicable narrative
labels and their corresponding sub-narrative labels
to each article. The task covers five languages (Bul-
garian, English, Hindi, Portuguese, and Russian)
and aims to evaluate narrative classification perfor-
mance under cross-lingual conditions.

SemEval-2025 Task 10 (Piskorski et al., 2025;
Stefanovitch et al., 2025) focused on multilingual
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characterization and narrative extraction from on-
line news, divided into three independent subtasks.
We participated in the Subtask 2 on the narrative
classification. In this task, our model achieved
a mid-to-upper range ranking on the final leader-
board, outperforming the baseline systems while
still leaving room for further improvement.

Our approach combines large-scale pre-trained
language models, a hierarchical classification strat-
egy, and entity framing analysis to automatically
identify and classify narratives across different lan-
guages and topics, providing a solution for narra-
tive extraction from multilingual news texts.

In this study, we first perform translation-based
data augmentation on the raw text data to ensure
label consistency and accuracy across multiple lan-
guages. We then fine-tune a Transformer-based
language model on the augmented dataset. To iden-
tify sub-narrative labels, we train separate classi-
fication models for each sub-narrative label and
combine these models into an ensemble model. Af-
ter completing the narrative label classification, we
calculate the probability distribution of each sub-
narrative label under its corresponding main narra-
tive label and select the sub-narrative label with the
highest probability as the classification result.

2 Background

Narrative classification is of great importance for
extracting and identifying narrative structures from
various types of texts, and it plays a crucial role
in fields such as computational linguistics, NLP,
and information retrieval (IR). In recent years, re-
searchers have shifted their focus from traditional
personal narratives (Langellier, 1989) to more di-
verse text types, especially informational texts (e.g.,
news reports, meeting minutes, and case analyses),
and have made significant progress in developing
computational methods for identifying narratives.
Classical narrative theory was initially proposed
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by Labov and Waletzky (Labov and Waletzky).
Building on this work, Swanson et al. (Swanson
et al., 2014) manually annotated texts related to
personal stories, categorizing clauses into three nar-
rative types (orientation, evaluation, and action)
and developed corresponding feature-based mod-
els. This endeavor laid an important foundation for
subsequent research in narrative classification.

As the demand for automatic recognition of nar-
rative structures continues to grow, there has been
increasing interest in integrating narrative theory
with machine learning models, aiming at achieving
more efficient and accurate narrative classification
across a variety of text types. Saldias and Roy (Sal-
dias and Roy, 2020) employed convolutional neural
networks (CNNs) to classify sentences in personal-
story texts, automatically labeling each sentence
according to the three narrative types proposed by
Swanson et al. Meanwhile, Levi et al. (Levi et al.,
2022) introduced NEAT (Narrative Elements An-
noTation), which uses multiple supervised learning
models to distinguish highly interrelated narrative
categories. Hatavara et al. (Hatavara et al., 2024)
further developed a rule-based and computational
approach to systematically extract narratives from
parliamentary records and oral history interviews,
demonstrating its feasibility on large datasets.

Recent surveys have provided comprehensive
overviews of current methods and challenges in nar-
rative extraction (Santana et al., 2023; Norambuena
et al., 2023). Meanwhile, large-scale pre-trained
language models, especially BERT (Devlin et al.,
2019) with their pre-training on bidirectional lan-
guage models (Rogers et al., 2020), are capable of
better understanding contextual information within
sentences and have thus been widely applied to
narrative classification tasks (Gao et al., 2019; Hu
et al., 2022; Purificato and Navigli, 2023). How-
ever, challenges still persist due to data scarcity
and the inherent complexity of narrative structures,
motivating researchers to explore the use of large
language models (LLMs) for data augmentation
(Conneau et al., 2020). Although both GPT (Ope-
nAl et al., 2023) and BERT are large-scale pre-
trained language models, GPT, as a generative
model, has the ability to produce coherent and con-
textually relevant text. Thus, it offers novel solu-
tions to address data insufficiency, particularly in
the generation of high-quality narrative texts (Bar-
talesi et al., 2024) and translating narrative records
(Hendy et al., 2023).

3 System overview

3.1 Framework Overview

Due to the limited volume of available training data
and the large number of label categories, directly
training deep learning models often fails to produce
satisfactory results. To address this issue, this study
proposes a multistage text translation and classi-
fication framework designed to efficiently handle
multilingual texts and convert them into a stan-
dardized format suitable for deep learning model
training. It comprises the following key steps:

(1) Data Augmentation via Text Translation: First,
all articles written in languages other than the
target language are translated into the required
training language to ensure data consistency.
For articles that exceed a certain length, a
segmented translation strategy is employed to
overcome API limitations while preserving
textual integrity and readability.

(2) Narrative Classification: After translation, a
global classification step is performed to as-
sign articles to specific themes or categories
based on their overall content. This step uti-
lizes a pre-trained Transformer model (e.g.,
BERT) combined with supervised learning to
optimize the classification process.

(3) Sub-narrative Classification: Next, texts un-
der the same narrative label are further classi-
fied into subcategories to capture fine-grained
semantic information. A hierarchical classifi-
cation method is adopted to allow the model to
recognize various narrative structures, thereby
improving classification accuracy.

This framework offers several advantages: (1)
Automation: It enables an end-to-end automated
process from multilingual translation to classifica-
tion, minimizing manual intervention and improv-
ing data-processing efficiency. (2) Adaptability: It
supports multilingual inputs and can be adapted for
various text classification tasks. (3) Computational
Resource Optimization: The framework improves
computational efficiency through segmented trans-
lation, dynamic model loading, parallel processing,
and other optimization strategies.

3.2 Text Translation Framework

This study employs an automated text translation
framework designed to batch-process and trans-
late lengthy articles, ensuring the textual content
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is comprehensively and efficiently converted into
the target language. Built on OpenAl’s GPT-4o,
the system adopts a segmented translation strategy
to address the challenges posed by extremely long
texts. The framework consists of the following key
steps: (1) Segmentation and Preprocessing: Long
documents are divided into smaller segments to cir-
cumvent API length limitations. This segmentation
method retains readability and allows for efficient
parallel processing. (2) Machine Translation Inte-
gration: Each segment is translated into the target
language using a LLM. This step ensures linguis-
tic uniformity, which is crucial for downstream
tasks such as classification and semantic analysis.
(3) Data Standardization: The translated text is
converted into a standardized format suitable for
subsequent model training, facilitating organized
data storage and retrieval.

Given a collection of source language text files,
some of which may exceed the maximum output
length supported by the OpenAl API (4,096 to-
kens), we propose a segmentation-based translation
approach to address this limitation. This approach
involves three main steps for each original text:
(1) Text Segmentation: The input text is divided
into smaller segments to ensure each falls within
the API’s token limit. (2) API-based Translation:
Each segment is translated individually using the
OpenAl translation API. (3) Translation Merging:
All translated segments are then concatenated to
reconstruct the complete translated text.

For texts exceeding the length limit, this pro-
cess ensures translation segment by segment and
reassemblage into a coherent full translation. By
integrating segmentation, translation, and standard-
ized output, this framework produces high-quality
multilingual data for further classification and se-
mantic analysis. Its modular design also enables
flexible adaptation to different languages, domains,
and model architectures, thus enhancing scalability
and robustness in multilingual NLP pipelines.

3.3 Multi-label Text Classification

After augmenting the training articles via text trans-
lation, this study employs a BERT-based multi-
label text classification framework. Specifically, for
text data containing multiple narrative labels, a pre-
trained Transformer model (BERT-base-uncased
(Devlin et al., 2019)) is used for text representa-
tion learning. We then train on the augmented text
corpus. The objective of this task is to perform
multi-label classification on the input text, where

each article can belong to multiple categories.

Given a dataset D = {(z;,Y;)}Y,, where
x; represents the text and Y; C C denotes the
set of labels assigned to that text (C' is the set
of all possible classes). The goal is to train
a model F' such that, for an input text x;, it
predicts the most appropriate set of class labels:
}A/z:F(xz):{gzl?ngﬂayzm}ﬂ @56{0,1}7,
where ¢/ indicates the probability that z; belongs
to class ¢;. The model architecture is given by:
F(z) = Sigmoid(BERT(z)),, where: BERT acts
as the backbone network, outputting logits that
serve as class prediction scores, Sigmoid converts
the logits into class probabilities: p(y;) = ﬁ,,
where z; is the prediction score for class 7. We
optimize the Binary Cross-Entropy loss: L =
— 2oty [yilog p(ys) + (1 — yi) log(1 — p(y:))] »»
where m denotes the total number of classes, y; is
the ground truth label for class i, and p(y;) is the
model-predicted probability for that class.

3.4 Sub-narrative Label Classification

For sub-narrative labels, we use a BERT-based hier-
archical text classification framework designed to
perform multi-level classification. In this task, each
text is first categorized into one or more top-level
labels, and then further subdivided into sub-labels
associated with each top-level category. To im-
prove classification accuracy and generalization, a
dedicated sub-label classifier is trained separately
for each top-level label.

For each top-level category c;, we train a dedi-
cated subcategory classifier. The number of neu-
rons in its output layer is equal to the number of
subcategories under c;. Formally, we denote this
classifier as: M; = BERTy+FC(h, |C’]S-“b|),, where
BERTj represents the BERT model parameterized
by 60, FC(h, \C’Js.“b|) is a fully connected layer that
takes the hidden representation h as input and out-
puts a vector of length |C;“b|.

Given a text dataset D = {(z;,;)},, where
x; represents the text and y; represents the corre-
sponding class label, let the set of top-level cat-
egories be denoted by: Cio, = {c1,¢9, ... em},
and let the set of subcategories associated with
a specific top-level category c; be denoted by:
C;“b = {5]1-, s?, . .,s;‘}. The goal is to learn a
function F' such that, given a known top-level cate-
gory c;, it can predict the subcategory label for a

text x; as follows: §; = F'(x; | ¢;).
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4 Experimental Setup

Dataset Description. The SemEval-2025 Task
10 Subtask 2 dataset consists of news articles in
five different languages: English (EN), Portuguese
(PO), Russian (RU), Bulgarian (BU), and Hindi
(HI). Each article is annotated with one or more nar-
rative labels from a predefined set of 21 top-level
narratives, and each narrative is further associated
with one or more sub-narratives from a total of 91
possible sub-narratives.

For our experiments, we used the multilingual
corpus with varying document distributions across
languages (see Figures 1-2). Prior to data augmen-
tation, the training set contained 399 EN articles,
400 PO articles, 133 RU articles, 401 BU articles,
and 366 HI articles. The development set consisted
of 41 EN articles, 35 PO articles, 32 RU articles,
35 BU articles, and 35 HI articles. Our test set
included 101 EN articles, 100 PO articles, 60 RU
articles, 100 BU articles, and 99 HI articles.

The dataset exhibits significant class imbalance
at both narrative and sub-narrative levels, as shown
in Figures1 and 2. Some narratives like “Criticism
of Institutions and Authorities” and “Discrediting
Ukraine” appear frequently, while others like “Cli-
mate Change is Beneficial” and “Controversy about
green technologies” are rarely represented. This
imbalance presents a challenge for classification
models, particularly in identifying and correctly
classifying minority classes.

To address the imbalance in training data across
languages, particularly the limited number of RU
articles, we implemented a translation-based data
augmentation strategy. After augmentation, each
language in the training set contained 1,699 articles,
creating a balanced training corpus across all five
languages. This augmentation approach enabled
our model to learn more robust cross-lingual pat-
terns and improved overall performance, especially
for languages with fewer original training samples.

Implementation Details. We implemented our
model using PyTorch (1.10.0) and the Hugging
Face Transformers library (4.16.2). For the text
translation framework, we employed OpenAI’s
GPT-40 via the official API. Documents were seg-
mented into chunks of approximately 1,000 tokens
to stay within API limits while maintaining context
coherence. For our augmentation process, we trans-
lated non-English articles to English and vice versa
to ensure balanced representation across languages.

We set the following hyperparameter values for

BERT-based multi-label classification model: (a)
pre-trained model: bert-base-uncased, (b) max-
imum sequence length: 128 tokens, (c) batch size:
8 (narrative classifier) / 3 (sub-narrative classifiers),
(d) learning rate: 2e-5 with AdamW optimizer, (e)
weight decay: 0.01, (f) training epochs: 30 (early
stopping with patience of 5) for narrative classifier
/ 3 for sub-narrative classifiers, (g) dropout rate:
0.1, (h) classification threshold: 0.2 (optimized on
validation set) for narrative classifier.

To validate the effectiveness of our data augmen-
tation approach, we conducted experiments both
with and without the augmented data. The results
demonstrate significant performance improvements
when using the augmented dataset, particularly for
languages with fewer original training samples like
Russian (see Table 3).

The training process for the narrative and sub-
narrative classifiers was structured as follows. We
first trained the top-level narrative classifier on the
full augmented dataset of 1,699 articles per lan-
guage. For each narrative category, we filtered the
dataset to include only articles with that narrative
label. We then trained a dedicated sub-narrative
classifier for each narrative category using a single-
label classification approach with LabelEncoder.
During inference, we first predicted the narrative
labels using the top-level classifier, then employed
the corresponding sub-narrative classifiers to pre-
dict the fine-grained labels.

For the sub-narrative classification, we orga-
nized articles by their top-level narrative labels and
trained separate BERT-based models for each top-
level category. Unlike the multi-label approach
used for narrative classification, each sub-narrative
classifier was trained as a standard single-label clas-
sification model using cross-entropy loss. This ap-
proach was chosen due to the hierarchical nature
of the labels and to reduce complexity in the sub-
narrative prediction task.

All sub-narrative models were saved with their
corresponding tokenizer and label encoder to en-
able efficient inference. During prediction, once the
top-level narrative was identified, the correspond-
ing sub-narrative model was loaded to predict the
specific sub-category. This hierarchical approach
allowed us to effectively handle the large number
of potential sub-narratives while maintaining com-
putational efficiency.

To address the class imbalance issue in the top-
level narrative classification, we implemented class
weighting in the loss function, where weights were
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Criticism of institutions and authorities
Discrediting Ukraine

Praise of Russia

Discrediting the West, Diplomacy

Other

Amplifying Climate Fears

Criticism of climate policies

Amplifying war-related fears

Criticism of climate movement

Downplaying climate change

Hidden plots by secret schemes of powerful groups
Questioning the measurements and science
Speculating war outcomes

Blaming the war on others rather than the invader
Russia is the Victim

Climate change is beneficial

Negative Consequences for the West

Controversy about green technologies
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Distribution of Narrative Labels
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Figure 1: Distribution Narrative Labels

Discrediting the West, Diplomacy: Other

Praise of Russia: Praise of Russian military might

Other

Criticism of institutions and authorities: Criticism of national governments

Amplifying Climate Fears: Amplifying existing fears of global warming

Amplifying war-related fears: There is a real possibility that nuclear weapons will be employed
Discrediting Ukraine: Discrediting Ukrainian government and officials and policies
Discrediting Ukraine: Discrediting Ukrainian military

Criticism of climate policies: Climate policies have negative impact on the economy
Downplaying climate change: Other

Criticism of institutions and authorities: Criticism of political organizations and figures
Criticism of climate movement: Climate movement is alarmist

Criticism of climate policies: Climate policies are ineffective

Hidden plots by secret schemes of powerful groups: Climate agenda has hidden motives
Speculating war outcomes: Other

Blaming the war on others rather than the invader: The West are the aggressors

Praise of Russia: Russia is a guarantor of peace and prosperity

Criticism of climate movement: Other

Category

Russia is the Victim: The West is russophobic
Questioning the measurements and science: Methodologies/metrics used are unreliable/faulty

Distribution of Subnarrative Labels

Count

Figure 2: Distribution Subnarrative Labels

inversely proportional to class frequencies in the
training set. This approach improved the model’s
ability to identify minority classes without signifi-
cantly degrading performance on majority classes.

Evaluation Metrics. Following the official
SemEval-2025 Task 10 evaluation criteria, we mea-
sured our model’s performance using the following
metrics: (a) F1 Macro: The unweighted mean of
F1 scores for each class, giving equal importance
to all classes regardless of their frequency. This
metric is particularly important for evaluating per-
formance on imbalanced datasets, as it prevents
the model from being overly biased toward major-
ity classes. (b) F1 Samples: The F1 score calcu-
lated for each instance and then averaged, which
accounts for the multi-label nature of the task. This
metric provides insights into the model’s ability to
correctly predict all relevant labels for each docu-
ment.

Additionally, we report the standard deviation
(St.Dev) for both metrics to analyze the stability of
our model’s performance across different classes
and samples. A lower standard deviation indicates
more consistent performance across all categories,
which is desirable for robust classification systems.

S Results and Analysis

In this study, we performed multilevel classifica-
tion on text data in different languages and com-
puted the F1 Macro Coarse and F1 Samples metrics
to evaluate the model’s classification performance
across different language datasets. The experimen-
tal results are presented in Table 3, where F1 Macro
Coarse measures the overall balance of classifica-
tion performance between categories, and F1 Sam-
ples focuses on the performance of the model in
individual samples.

Table 1: F1 Scores on Test set

Lang F1 Macro F1 St.Dev FI Sample F1 St.Dev Smp
EN 0.443 0.380 0.281 0.352
PO 0.491 0.275 0.245 0.204
RU 0.554 0.328 0.323 0.342
BU 0.523 0.366 0.324 0.360
HI 0.365 0.440 0.365 0.414

To further validate the effectiveness of the pro-
posed model, we conducted a systematic compari-
son with baseline methods on different language-
specific datasets. As presented in Table 3, our
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model consistently outperforms the baseline across
all evaluated languages. The F1 Macro and F1 Sam-
ple scores demonstrate substantial improvements,
reflecting both better overall classification balance
and stronger sample-level performance.

Table 2: F1 Scores Comparison with Baseline Models

Baseline Proposed Model

F1 Macro F1 Sample F1 Macro F1 Sample

EN 0.030 0.013 0.443 0.281
PO 0.037 0.014 0.491 0.245
RU 0.065 0.008 0.554 0.323
BU 0.040 0.039 0.523 0.324
HI 0.081 0.000 0.365 0.365

The comparative analysis reveals remarkable im-
provements over the baseline models. For English
(EN), our model achieves an F1 Macro score of
0.443 compared to the baseline’s 0.030, represent-
ing a 14.8x improvement. Similarly, Portuguese
(PO) shows a 13.3x improvement, Russian (RU)
an 8.5x improvement, Bulgarian (BU) a 13.1x im-
provement, and Hindi (HI) a 4.5x improvement
in F1 Macro scores. The most dramatic improve-
ment is observed in the F1 Sample metric for Hindi,
where our model achieves 0.365 compared to the
baseline’s 0.000, indicating the baseline completely
failed to correctly classify individual samples in
this challenging language.

Table 3: F1 Macro Coarse Comparison

Lang No Augmentation = With Augmentation
EN 0.329 0.443
PO 0.220 0.491
RU 0.224 0.554
BU 0.188 0.523
HI 0.301 0.365

Our model performs best on the Russian (RU)
dataset, reaching an F1 Macro Coarse of 0.554 and
an F1 Samples of 0.323, suggesting relatively high
accuracy both at the global category level and for
individual samples. In contrast, when applied to
the Hindi (HI) dataset, it exhibits the lowest clas-
sification performance, with an F1 Macro Coarse
of only 0.365, implying that this language poses
a greater classification challenge—potentially due
to data quality or linguistic factors. Meanwhile,
Portuguese (PO) and Bulgarian (BU) show com-
parable results at 0.491 and 0.523, respectively,

indicating relatively stable model generalization
for these languages. Regarding the standard devi-
ation (St. Dev.), Hindi’s F1 St.Dev. Coarse is as
high as 0.440, with an F1 St.Dev. Samples of 0.414,
suggesting large variability in its classification per-
formance—Ilikely stemming from data imbalance
or label inconsistencies. In contrast, Portuguese
has an F1 St.Dev. Coarse of only 0.275, implying
more stable classification outcomes, making it suit-
able for more fine-grained text classification tasks.
The distribution of classification results is not uni-
form: a few high-frequency categories (e.g., "Criti-
cism of Institutions and Authorities", "Slandering
Ukraine," "Praise for Russia") occupy a relatively
large portion of the corpus, whereas other cate-
gories (e.g., "Questioning Scientific Measurements
and Indicators", "Climate Change is Beneficial")
have significantly fewer samples. This imbalance
not only reflects real-world differences in the fre-
quency with which various narratives appear but
also potentially affects the model’s discriminatory
power: when high-frequency categories dominate
the dataset, the model tends to learn their features
more effectively, while its ability to recognize low-
frequency categories weakens accordingly.

6 Conclusion

In the multi-label setting, the framework integrates
a BERT-based text classification method, using au-
tomated data processing, optimized training work-
flows, and memory management strategies. Our
proposed framework additionally provides a range
of functional modules (segmentation, automated
translation, and standardized output) that facilitate
the generation of high-quality multilingual data
for subsequent classification and semantic analy-
sis. Experimental results show that our method
performs well in handling large-scale, multilingual
text data and achieves high accuracy in hierarchi-
cal classification tasks. Future research directions
include: (1) further optimizing parallel processing
strategies to improve overall training efficiency; (2)
enhancing the accuracy of sub-category classifica-
tion; and (3) exploring more powerful multilingual
pre-trained models to strengthen system robustness
and generalization capabilities.
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