
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 937–952
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

TabaQA at SemEval-2025 Task 8: Column Augmented Generation for
Question Answering over Tabular Data

Ekaterina Antropova1 Egor Kratkov1 Roman Derunets4,5

Margarita Trofimova1 Ivan Bondarenko4 Alexander Panchenko3,2

Vasily Konovalov2,1 Maksim Savkin1

1Moscow Institute of Physics and Technology
2AIRI 3Skoltech 4Novosibirsk State University

5Siberian Neuronets LLC
{antropova.eg, savkin.mk, vasily.konovalov}@phystech.edu

Abstract

The DataBench shared task in the SemEval-
2025 competition aims to tackle the problem
of question answering (QA) from tabular data.
Given the diversity of the structure of tables,
there are different approaches to retrieving the
answer. Although Retrieval-Augmented Gen-
eration is a viable solution, extracting relevant
information from tables remains a significant
challenge. In addition, the table can be pro-
hibitively large for direct integration into the
LLM context. In this paper, we address QA
over tabular data first by identifying relevant
columns that might contain the answers, then
the LLM generates answers by providing the
context of the relevant columns, and finally,
the LLM refines its answers. This approach
secured us 7th place in the DataBench lite cate-
gory.

1 Introduction

Question Answering (QA) is a long-standing chal-
lenge in artificial intelligence, with numerous varia-
tions and applications. QA systems are extensively
used in a variety of real-world scenarios, such as
virtual assistants and chatbots for customer support.
They serve as powerful tools for extracting relevant
information from large and diverse datasets.

A crucial challenge arises when the required in-
formation is not just embedded in natural language
but also stored in structured formats, such as tab-
ular data. The primary challenge in tabular QA
stems from the need to bridge the gap between
structured data representation and natural language
understanding. While substantial progress has been
made in developing models that handle either nat-
ural language or structured data independently, ef-
fectively integrating both remains an open research
problem.

Traditional retrieval methods struggle to select
relevant table segments, and large language mod-
els (LLMs) can be inefficient when tasked with

processing extensive tabular data directly. To ad-
vance research in this area, the DataBench shared
task (Os’es Grijalba et al., 2025) was introduced,
focusing on answering questions from tabular
datasets. In particular, the shared task proposes
to answer the question on the DataBench (Grijalba
et al., 2024) datasets and a smaller DataBench lite
version (a reduced version of each dataset from the
original DataBench). In this paper, we focus pri-
marily on a lite subtask. Our approach incorporates
several key strategies inspired by existing method-
ologies. First, we observe that all the questions can
be answered using information from only three rele-
vant columns. We leverage column augmented gen-
eration (CAG), a technique that dynamically selects
relevant columns based on LLM-generated hints
and helps retain only the most relevant columns.
CAG addresses multiple challenges simultaneously
by filtering out irrelevant columns, reducing noise,
and significantly shrinking the table size, which
enhances model efficiency. We then explore the
effect of several prompting techniques: 1) iterative
self-refinement employs a feedback loop where the
model iteratively refines its own responses; 2) self-
consistency answer selection improves the reliabil-
ity of stochastic LLM generations by aggregating
multiple generated answers; 3) Chain-of-thought
(CoT) allows the model to produce intermediate
reasoning steps, which increases its reasoning ca-
pabilities.

By systematically analyzing the impact of each
individual modification, we investigate how these
techniques can be effectively combined to make
our best performing solution. Our submission uti-
lizes only open-source and still achieves compet-
itive results: we rank 7th out of 35 teams on the
DataBench lite leaderboard. Our findings highlight
the potential of combining structured data process-
ing techniques with robust QA methodologies to
improve tabular QA capabilities.

Our main contributions are threefold:

937

mailto:antropova.eg@phystech.edu
mailto:savkin.mk@phystech.edu
mailto:vasily.konovalov@phystech.edu

Figure 1: An illustration of CAG pipeline. Step 1) Extract column relevant to the question based on their names,
see Appendix A. Step 2) Remove all irrelevant columns from the tables in dataset. Step 3) Code generation: Insert
column names and descriptions, question in the prompt and generate code (see Appendix A), then execute it;
In-context learning: Insert filtered tables, column descriptions and question in the prompt and generate an answer,
see Appendix A. Reasoning prompting techniques, see Section 5.2, are applied along with the Step 3.

• Column Augmented Generation We enhance
context retrieval by dynamically selecting rele-
vant table segments using LLM-generated col-
umn hints, improving the quality of retrieved
evidence.

• Reasoning Prompts We systematically exper-
iment with different reasoning strategies to en-
hance LLM reasoning capabilities and identify
the most effective prompting techniques.

• Reasoning Scaling We analyze how different
levels of reasoning complexity influence perfor-
mance, demonstrating that increased reasoning
depth can significantly improve tabular QA accu-
racy.

2 Related Work

Prior work in table-based question answering can
be broadly categorized into two main paradigms:
Text-to-Code and Retrieval-Augmented Genera-
tion .

Text-to-Code methods translate natural lan-
guage queries into executable code, typically SQL.
Recent advances in this area have been driven by
two key factors. First, improvements in pre-trained
language models have led to richer semantic repre-
sentations of queries and table content (Konovalov
and Tumunbayarova, 2018). Second, a deeper un-
derstanding of the role that table structure plays in
query interpretation has informed more accurate
model architectures (Li et al., 2023).

Within this paradigm, several sub-approaches
have emerged. Schema-aware parsing models, such
as TAPAS (Herzig et al., 2020), T5-SQL (Arcad-
inho et al., 2022), TAPEX (Liu et al., 2022), and
OmniTab (Jiang et al., 2022), explicitly encode

schema information (e.g., column names and data
types) to guide SQL generation. Another line of
work uses intermediate logical forms, as in DIN-
SQL (Pourreza and Rafiei, 2023), which first parse
questions into structured operations before con-
verting them to SQL, increasing the robustness of
the model. Extensions to text-to-code approaches
include systems like text2pandas (Venturi, 2023),
which generate executable pandas code. These
methods offer more flexible data manipulation and
are especially useful for non-standard or heteroge-
neous table formats.

Retrieval-Augmented Generation approaches
condition the model output on evidence retrieved
from the knowledge base (table) (Belikova et al.,
2024). These methods enhance the grounding of
generated answers and improve performance on
complex queries.

Several retrieval strategies have been proposed
within the RAG framework. Aushev et al. (2025)
proposed to combine retrieval with techniques to
enhance LLM attention on the retrieved context
rather than on its own knowledge. Table segment
retrieval, as used in TableRAG (Chen et al., 2024),
identifies relevant portions of the table for condi-
tioning, helping models focus on the most infor-
mative regions. Row-column retrieval methods, in-
cluding ITR (Lin et al., 2023) and TAP4LLM (Sui
et al., 2024), further improve scalability by se-
lectively encoding and retrieving key rows and
columns.

In TableRAG (Chen et al., 2024), schema re-
trieval is used to identify relevant table columns
by constructing structured representations of each
column (including name, type, min/max values,
and most frequent values). Given a query, a lan-

938

guage model generates a list of candidate columns,
and retrieval is performed using vector search
(e.g., FAISS), keyword search (BM25), or hybrid
search strategies combining both. Embeddings
from the BAAI/bge-large-en-v1.5 model (Xiao
et al., 2023) are used for vectorization. Similarly,
TAP4LLM (Sui et al., 2024) introduces Table Sam-
pling, where each column is embedded and the top-
k columns are retrieved based on their semantic
proximity to the query, again using FAISS. To en-
hance retrieval, keyword-based and hybrid search
strategies are also explored.

ReasTAP (Zhao et al., 2022) demonstrates that
high-level reasoning over tables can be incorpo-
rated during pre-training without requiring task-
specific architectures. Although these methods re-
duce input length and improve focus, they often
incur additional computational costs and may strug-
gle with degraded embedding quality on longer
sequences.

Finally, hybrid approaches combine retrieval
with execution or synthesis mechanisms. For ex-
ample, ReAcTable (Zhang et al., 2024) integrates
context retrieval with program synthesis and itera-
tive refinement, bridging the text-to-SQL and RAG
paradigms. H-STAR (Abhyankar et al., 2024) fur-
ther extends this idea by employing dynamic hybrid
prompting, adapting between structured and un-
structured strategies depending on the complexity
of the query. These systems highlight the poten-
tial of combining multiple paradigms to balance
efficiency, scalability, and accuracy.

Recent progress, particularly inspired by
TableRAG (Chen et al., 2024), underscores the im-
portance of selectively retrieving and conditioning
on relevant table segments. Such methods have
shown strong performance gains, especially on
complex or noisy tables. However, their effective-
ness remains closely tied to the precision of the re-
trieval component — inaccuracies at this stage can
significantly degrade downstream performance.

The approaches to develop a QA system based
on the tabular data can be further enhanced to be
based on knowledge graphs (Sakhovskiy et al.,
2024).

3 Dataset

The DataBench dataset consists of 65 publicly
available datasets, with 3 269 975 rows and 1615
columns in total, and 1300 questions in 5 domains.
The dataset is split into three sections: training

(comprising 988 questions), testing (featuring 522
questions and 517 questions after changes), and de-
velopment (consisting of 320 questions) (Grijalba
et al., 2024). DataBench Lite is obtained by short-
ening the table for each question in the DataBench
dataset so that 20 columns and 20 rows remain. Ex-
amples of multi-column questions (requiring more
than two columns to generate a correct answer) are
provided in the Appendix C.

Column types presented in DataBench:

• Boolean: Valid answers include True/False, Y/N,
Yes/No (all case insensitive).

• Category: A value of a cell (or a substring of a
cell) in the dataset.

• Number: A numerical value from a cell in the
dataset that may represent a computed statistic
(e.g., average, maximum, minimum).

• List[category]: A list containing a fixed number
of categories. The expected format is: “[’cat’,
’dog’]”. Pay attention to the wording of the ques-
tion to determine if uniqueness is required or if
repeated values are allowed.

• List[number]: Similar to List[category], but with
numbers as its elements.

4 Evaluation

Participants must answer questions using only the
provided dataset, including development and train-
ing sets, without external data. The accuracy scores
for DataBench and DataBench lite are ranked
separately. An automated evaluation framework1

streamlines the process, allowing customization of
prompt building, model calling, and result evalua-
tion, while supporting batch processing and stan-
dardized response handling.

The default evaluation function compares sub-
missions against the truth set, featuring:

• Null: Treats null-like values as equivalent.

• Boolean: Normalizes inputs and checks against
true/false lists.

• Category/String: Strips and compares strings,
with date parsing for format variations.

• Number: The values are rounded to two decimal
places for tolerance.

1https://github.com/jorses/databench_eval

939

https://github.com/jorses/databench_eval

Model Precision Recall F1

CAG

Llama-3.3-70B-Instruct 84.60 98.33 90.95
Llama-3.1-8B-Instruct 61.80 96.90 75.46

Table Sampling (k=3)

bge-large-en-v1.5 26.10 52.27 34.82
BM25 14.64 27.92 19.21
bge-large-en-v1.5 + BM25 20.15 62.29 30.46

TableRAG

Llama-3.3-70B-Instruct
bge-large-en-v1.5 16.41 32.70 21.85
BM25 26.96 27.92 27.43
bge-large-en-v1.5 + BM25 22.28 50.84 30.98

Table 1: The micro-averaged results for detecting the
required columns to form the answer to the question (on
the dev dataset). For the Table Sampling method, we
consider k=3 based on the considerations given in the
section D.

• List[Category]: Normalizes and checks set equiv-
alence (order-agnostic).

• List[Number]: Normalizes, rounds, and ensures
order-agnostic equivalence.

In addition, the organizers decided to manually
review the results of the top scores to ensure fair-
ness and accuracy in determining the winner.

5 System Overview

5.1 Column Augmented Generation
The Column Augmented Generation (CAG) ap-
proach is a two-step method inspired by Retrieval-
Augmented Generation techniques. Since large
tables cannot be easily incorporated into an LLM’s
context due to size constraints, the first step in
our pipeline involves identifying the most relevant
columns needed to answer a given question (see
Appendix A for the relevant prompt). This col-
umn selection process is treated as a multi-label
classification task, evaluated using micro-averaged
precision, recall, and F1 score (see Table 1). The
selected column names are then validated for for-
mat compliance, and if necessary, the generated
response is refined or corrected.

Once the relevant columns are identified, the sec-
ond step involves prompting the LLM again, this
time with the extracted column data included as
context. This ensures that the model focuses only
on the most relevant information when generating
an answer. The CAG approach aligns closely with

techniques used in TableRAG (Chen et al., 2024),
improving both passage quality and model effi-
ciency by dynamically narrowing the input scope.

5.2 Reasoning Prompting Techniques

In addition to the CAG technique, we incorporated
advanced prompt engineering methods to enhance
reasoning abilities, specifically Chain-of-Thought
(CoT) (Wei et al., 2022), Self-Consistency (Wang
et al., 2023), and Self-Refine (Madaan et al., 2023),
see all prompts in Appendix B. These techniques
can be applied independently or in combination
with CAG to improve its effectiveness.

The Self-Consistency method involves calling
the model multiple times and aggregating the re-
sults using a majority vote to determine the most
frequent answer. We experimented with different
numbers of model calls, such as 3, 5, and 10, to
assess its impact, see Figure 3.

The Chain-of-Thought technique encourages
step-by-step reasoning by instructing the model
to break down its thought process. This approach
improves the focus of the model on intermediate
reasoning steps while also increasing token gen-
eration. To implement this, we used few-shot
prompting with explicit CoT examples. Addition-
ally, we explored the combination of CoT and Self-
Consistency to further refine the reasoning process.

Finally, we tried applying Self-Refine as a post-
generation technique. The model was instructed to
evaluate its own responses, providing feedback on
correctness and answer format. This feedback was
then used to guide subsequent answers, leading to
iterative improvements.

In our code generation method, we generated
Python code (which yielded better results than
SQL) and then executed it. If the code generated an
error, the self-refine method was applied with the
exception given to the prompt. Chain-of-Thought
and self-consistency were also integrated to
improve the effectiveness. However, we achieved
better results on DataBench lite using the Table-
to-text method with the Chain-of-Thought and
self-consistency.

6 Experimental Setup

For our experimental setup we used two open
LMs: (1) Llama-3.1-8B-Instruct2 is a language

2https://hf.co/meta-llama/Llama-3.
1-8B-Instruct

940

https://hf.co/meta-llama/Llama-3.1-8B-Instruct
https://hf.co/meta-llama/Llama-3.1-8B-Instruct

Model EM

Python Code Generation
CodeLlama-7B* 30.3
CodeLlama-13B* 33.1
Llama-3.1-8B-Instruct 45.98

+ CAG 51.15 (+5.17)

Llama-3.3-70B-Instruct 70.5
+ CAG 65.51 (-4.99)

In-Context Learning
Llama-2-7B* 14.8
Llama-2-13B* 20.7
Llama-3.1-8B-Instruct 27.78

+ CAG 37.93 (+10.15)

Llama-3.3-70B-Instruct 49.81
+ CAG 64.37 (+14.56)

DeepSeek-R1-32B 77.78
+ CAG 83.52 (+5.74)

Table 2: Results on the DataBench Lite test set. EM de-
notes the Exact Match (see Section 4); "*" denotes base-
lines provided by the competition organizers, see (Gri-
jalba et al., 2024). +CAG indicates the use of our pro-
posed CAG method. Our approach consistently outper-
forms baselines.

Model EM

Llama-3.3-70B-Instruct 49.81
+CAG 64.37 (+14.56)

+CAG+Ref 69.36 (+19.55)

+CAG+CoT 81.03 (+31.22)

+CAG+CoT+Ref(1) 77.59 (+27.78)

+CAG+CoT+Cons(10) 81.99 (+32.18)

Table 3: Results on the DataBench Lite test set. This
table demonstrates the impact of various prompting
techniques on the overall performance, applied in in-
context learning settings. The techniques include:
CAG (Column-Augmented Generation), CoT (Chain-of-
Thought instruction included in the prompt), Ref (Self-
Refine prompt), and Cons (Self-Consistency answer
selection). For further details on how these prompting
methods were implemented, refer to Section 5.2 and
Appendix B.

model with 8 billion parameters and is optimized
for conversational applications, supporting a con-
textual length of up to 128 thousand tokens; (2)
Llama-3.3-70B-Instruct3 is a large language
model with 70 billion parameters and is optimized

3https://hf.co/meta-llama/Llama-3.
3-70B-Instruct

for conversational applications, supporting a con-
textual length of up to 128 thousand tokens (Tou-
vron et al., 2023). In addition, we evaluate our CAG
approach on DeepSeek-R1-32B4 that has shown
advanced reasoning abilities over the LMs of a
comparable number of parameters (DeepSeek-AI,
2025). All LMs were evaluated for temperature
= 0.7. The BAAI/bge-large-en-v1.55 was also
used as an embedding model.

7 Results and Discussion

Our main results on the DataBench lite test split
are summarized in Table 2.

7.1 Required Columns Generation

The findings confirm that the 70B model consis-
tently outperforms the smaller 8B model across all
settings. This is evident in the first step of the CAG
pipeline, where LLMs identify relevant columns,
as shown in Table 1. The 70B Llama achieves a
micro-average F1 score of 90.95%, significantly
outperforming the 8B models.

We also evaluated retrieval-based baselines. In
TableRAG, the best results were achieved with
the bge-large-en-v1.5 embeddings combined with
BM25 retrieval, reaching an F1 score of 30.98%.
In Table Sampling (from TAP4LLM), the best
result was obtained with the bge-large-en-v1.5
model, achieving an F1 score of 34.82%. On the
DataBench Lite dataset, Table Sampling outper-
formed TableRAG but still showed lower perfor-
mance compared to CAG. This could be due to
the fact that TableRAG and Table Sampling ap-
proaches typically perform better on large tables,
while DataBench Lite consists of relatively small
tables (20 rows and 20 columns) (Table 1). For
Table Sampling, we found that the optimal num-
ber of retrieved columns is k = 3, as detailed in
Appendix D.

7.2 Column Augmented Generation

Table 2 further demonstrates that the CAG tech-
nique significantly improves performance across
all prompting strategies that do not require code
execution, producing an absolute percentage in-
crease of 10.1 and 12.6 for the 8B and 70B mod-
els, respectively. When combined with Chain-of-
Thought, performance improves even further, with

4https://hf.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-32B

5https://hf.co/BAAI/bge-large-en-v1.5

941

https://hf.co/meta-llama/Llama-3.3-70B-Instruct
https://hf.co/meta-llama/Llama-3.3-70B-Instruct
https://hf.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://hf.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://hf.co/BAAI/bge-large-en-v1.5

percentage gains of 26.8 and 19.5 over the baseline
prompt.

7.3 Reasoning Prompting Techniques

Reasoning-based prompting techniques, including
CoT, self-refinement, and self-consistency, con-
tribute to additional accuracy gains when combined
with CAG, see Table 3.

By aggregating multiple responses through self-
consistency, we aimed to mitigate the randomiza-
tion effect of suboptimal prompts. This approach
proved effective, boosting EM scores by 0.96 ab-
solute percent when compared to the CAG+CoT
approach. Experiments with different numbers of
reasoning paths indicate a stable increase in EM
scores up to 10 paths, see Figure 3. Beyond this,
setting up to 40 paths for the 8B model resulted in
only a marginal gain, so due to the high computa-
tional cost, we opted to settle on 10 paths.

Self-refinement enables the model to verify and
correct its responses, improving its reliability, par-
ticularly. However, while refinement techniques
improved accuracy through self-correction, pure
CoT performed better. CoT may have confused the
model by already including iterative refinements,
making added steps redundant.

DeepSeek-R1-32B, which performs extended
reasoning before generating an answer, emerged
as a strong alternative to traditional prompting
techniques. It achieved an EM of 77.78%,
which increased to 83.52 with CAG—the high-
est result obtained. Increasing test-time compute,
whether through the progressive combination of
prompting techniques (CAG → CAG+CoT →
CAG+CoT+self-consistency) or through the use
of reasoning models, consistently led to improved
results. These findings highlight the benefits of
test-time compute scaling for tabular QA.

Conclusion

In this work we applied the CAG approach for
SemEval-2025 Task 8: TabularQA competition.
The CAG is a two-step approach in which we first
use an LLM to identify columns relevant to the
question. The LLM then generates an answer based
on the content of these columns. Using the CAG ap-
proach, we outperformed all of the baselines men-
tioned. In addition, we applied reasoning prompt
engineering techniques to further improve the gen-
erated answers. Moreover, we revealed that CAG
based on DeepSeek-R1-32B outperformed all sizes

of Llamas, which confirms the superiority of the
reasoning language models for TabularQA.

The CAG approach can be used independently
or integrated within an NLP framework such as
DeepPavlov (Savkin et al., 2024).

Limitations

Our experiments were limited by time and com-
putational resources, which prevented us from
fully optimizing the suggested prompting tech-
niques. Wang et al. (2023) noted that increas-
ing the number of reasoning paths could further
improve performance. Additionally, we did not
compute scores for the combination of self-refine
and self-consistency prompting, as the computa-
tional cost of such an approach would have been
prohibitively high. The DeepSeek-R1-32B model
also presented challenges, as it generated exten-
sive reasoning traces, often exceeding 16 000 to-
kens for even simple prompts, making it impracti-
cal to test additional prompting techniques within
our resource constraints. Furthermore, we were
unable to evaluate all potentially valuable open-
source LLMs and did not test any models. Since
we primarily focused on no-code solutions, we did
not explore code-generation-specific optimizations
in detail, though all the described approaches can
be easily transferred to code generation.

References
Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chan-

dan K. Reddy. 2024. H-STAR: llm-driven hy-
brid sql-text adaptive reasoning on tables. CoRR,
abs/2407.05952.

Samuel Arcadinho, David Aparício, Hugo Veiga, and
António Alegria. 2022. T5ql: Taming language mod-
els for sql generation. Preprint, arXiv:2209.10254.

Islam Aushev, Egor Kratkov, Evgenii Nikolaev, An-
drei Glinskii, Vasilii Krikunov, Alexander Panchenko,
Vasily Konovalov, and Julia Belikova. 2025. RAGula-
tor: Effective RAG for regulatory question answering.
In Proceedings of the 1st Regulatory NLP Workshop
(RegNLP 2025), pages 114–120, Abu Dhabi, UAE.
Association for Computational Linguistics.

Julia Belikova, Evegeniy Beliakin, and Vasily Kono-
valov. 2024. JellyBell at TextGraphs-17 shared
task: Fusing large language models with external
knowledge for enhanced question answering. In Pro-
ceedings of TextGraphs-17: Graph-based Methods
for Natural Language Processing, pages 154–160,
Bangkok, Thailand. Association for Computational
Linguistics.

942

https://doi.org/10.48550/ARXIV.2407.05952
https://doi.org/10.48550/ARXIV.2407.05952
https://arxiv.org/abs/2209.10254
https://arxiv.org/abs/2209.10254
https://aclanthology.org/2025.regnlp-1.18/
https://aclanthology.org/2025.regnlp-1.18/
https://aclanthology.org/2024.textgraphs-1.15/
https://aclanthology.org/2024.textgraphs-1.15/
https://aclanthology.org/2024.textgraphs-1.15/

Si-An Chen, Lesly Miculicich, Julian Eisenschlos,
Zifeng Wang, Zilong Wang, Yanfei Chen, Yasuhisa
Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and Tomas Pfis-
ter. 2024. Tablerag: Million-token table understand-
ing with language models. In Advances in Neural
Information Processing Systems 38: Annual Confer-
ence on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Jorge Osés Grijalba, Luis Alfonso Ureña López, Euge-
nio Martínez Cámara, and José Camacho-Collados.
2024. Question answering over tabular data with
databench: A large-scale empirical evaluation of llms.
In Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language Re-
sources and Evaluation, LREC/COLING 2024, 20-25
May, 2024, Torino, Italy, pages 13471–13488. ELRA
and ICCL.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. Tapas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu-
big, and Weizhu Chen. 2022. Omnitab: Pretraining
with natural and synthetic data for few-shot table-
based question answering. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL 2022, Seattle,
WA, United States, July 10-15, 2022, pages 932–942.
Association for Computational Linguistics.

Vasily Konovalov and Zhargal Tumunbayarova. 2018.
Learning word embeddings for low resourse lan-
guages: The case of buryat. In Komp’juternaja
Lingvistika i Intellektual’nye Tehnologiithis, pages
331–341.

Shuqin Li, Kaibin Zhou, Zeyang Zhuang, Haofen Wang,
and Jun Ma. 2023. Towards text-to-sql over aggre-
gate tables. Data Intell., 5(2):457–474.

Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adrià
de Gispert, and Gonzalo Iglesias. 2023. An inner
table retriever for robust table question answering.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July
9-14, 2023, pages 9909–9926. Association for Com-
putational Linguistics.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: table pre-training via learning a neural SQL
executor. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Jorge Os’es Grijalba, Luis Alfonso Ure na-L’opez,
Eugenio Mart’inez C’amara, and Jose Camacho-
Collados. 2025. SemEval-2025 task 8: Question
answering over tabular data. In Proceedings of the
19th International Workshop on Semantic Evalua-
tion (SemEval-2025), Vienna, Austria. Association
for Computational Linguistics.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: decomposed in-context learning of text-
to-sql with self-correction. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Andrey Sakhovskiy, Mikhail Salnikov, Irina Nikishina,
Aida Usmanova, Angelie Kraft, Cedric Möller, De-
bayan Banerjee, Junbo Huang, Longquan Jiang, Rana
Abdullah, Xi Yan, Dmitry Ustalov, Elena Tutubalina,
Ricardo Usbeck, and Alexander Panchenko. 2024.
TextGraphs 2024 shared task on text-graph represen-
tations for knowledge graph question answering. In
Proceedings of TextGraphs-17: Graph-based Meth-
ods for Natural Language Processing, pages 116–
125, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Maksim Savkin, Anastasia Voznyuk, Fedor Ignatov,
Anna Korzanova, Dmitry Karpov, Alexander Popov,
and Vasily Konovalov. 2024. DeepPavlov 1.0: Your
gateway to advanced NLP models backed by trans-
formers and transfer learning. In Proceedings of
the 2024 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 465–474, Miami, Florida, USA. Association
for Computational Linguistics.

Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du,
Shi Han, and Dongmei Zhang. 2024. TAP4LLM:
table provider on sampling, augmenting, and pack-
ing semi-structured data for large language model
reasoning. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, Miami, Florida,
USA, November 12-16, 2024, pages 10306–10323.
Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

943

http://papers.nips.cc/paper_files/paper/2024/hash/88dd7aa6979e352fda7c4952ca8eac59-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/88dd7aa6979e352fda7c4952ca8eac59-Abstract-Conference.html
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2024.lrec-main.1179
https://aclanthology.org/2024.lrec-main.1179
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/V1/2022.NAACL-MAIN.68
https://doi.org/10.18653/V1/2022.NAACL-MAIN.68
https://doi.org/10.18653/V1/2022.NAACL-MAIN.68
http://www.dialog-21.ru/media/4528/konovalovvp_tumunbayarovazb.pdf
http://www.dialog-21.ru/media/4528/konovalovvp_tumunbayarovazb.pdf
https://doi.org/10.1162/DINT_A_00194
https://doi.org/10.1162/DINT_A_00194
https://doi.org/10.18653/V1/2023.ACL-LONG.551
https://doi.org/10.18653/V1/2023.ACL-LONG.551
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
https://aclanthology.org/2024.textgraphs-1.9/
https://aclanthology.org/2024.textgraphs-1.9/
https://doi.org/10.18653/v1/2024.emnlp-demo.47
https://doi.org/10.18653/v1/2024.emnlp-demo.47
https://doi.org/10.18653/v1/2024.emnlp-demo.47
https://aclanthology.org/2024.findings-emnlp.603
https://aclanthology.org/2024.findings-emnlp.603
https://aclanthology.org/2024.findings-emnlp.603
https://aclanthology.org/2024.findings-emnlp.603
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971

Gabriele Venturi. 2023. PandaAI: the conversational
data analysis framework.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. CoRR,
abs/2309.07597.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2024.
Reactable: Enhancing react for table question answer-
ing. Proc. VLDB Endow., 17(8):1981–1994.

Yilun Zhao, Linyong Nan, Zhenting Qi, Rui Zhang,
and Dragomir Radev. 2022. Reastap: Injecting ta-
ble reasoning skills during pre-training via synthetic
reasoning examples. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 9006–9018.
Association for Computational Linguistics.

944

https://github.com/sinaptik-ai/pandas-ai
https://github.com/sinaptik-ai/pandas-ai
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2309.07597
https://doi.org/10.48550/ARXIV.2309.07597
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.615
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.615
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.615

A CAG Baseline Prompts

Prompt for extracting relevant columns

Given a table contains columns with names <list of column names>, I want to answer a question:
<question>.

Please select a few column names from the list <list of column names>, the values of which will
help answer the question.

Please provide a list of column names in the list format without any additional explanations.

Example of output: ["column name1", "column name2", "column name3"]

Baseline in-context learning prompt

You are a data analysis assistant. Given a table with the following columns: <list of retrieved col-
umn names>, and the table data: <table as string>, answer the following question: <question>.
Your task is to analyze the table and provide a concise answer to the question. The answer must
strictly adhere to one of the following formats, depending on the question:

1. Boolean: True or False
2. Category: A single category as a Python string (e.g., "category_name")
3. Number: A single number (e.g., 42)
4. List[Category]: A list of strings (e.g., [’category_1’, ’category_2’])
5. List[Number]: A list of numbers (e.g., [1, 2, 3])
Rules:
- Do not include any additional text, comments, or explanations.

Examples:
Question 1: <question>
Answer 1: <answer>
· · ·
Now, provide the answer to the following question: <question>

Baseline code generation prompt

Examples:
Example 1:
Question: <question>
Answer: <answer>
Example 2: . . .
—–

Instructions:
Implement the following function in one line.
Answer with the function only with no additional explanations.
The function must return one of these types: bool, int, str, list[int], or list[str].

Formatting rules:
1) Answer with the function only. No comments, no additional explanations.

945

2) Your answer should start with: def answer
3) The function should be implemented in one line

Your task: complete the following function in one line. It should give the answer to: {question}
def answer(df: pd.DataFrame):

df.columns = {list_columns}
return

B Reasoning Prompting Techniques

In-context learning prompt with Chain-of-Thought

Example 1:
Table columns: <list of column names>
Question: <question>
Answer: <answer>

Example 2: . . .
—

You are a data analysis assistant. You are given a table and a question. Answer the question based
only on the information in the table. The answer must be in one of the 5 following formats:
- Boolean (True or False) if the question requires a yes/no answer.
Example: [ANSWER] True
- Number if the question requires a numerical response.
Example: [ANSWER] 15
- Category (a string) if the question requires a categorical response.
Example: [ANSWER] London
- List[Category]: A list of strings.
Example: [ANSWER] [’San Francisco’, ’New York’, ’Wuhan’, ’Bangalore’]
- List[Number]: A list of numbers.
Example: [ANSWER] [1, 2, 3, 4, 5]

Rules:
- Start the answer with: "Let’s think step by step". Then give your reasoning to your answer.
- Finish your answer with [ANSWER] and give the final answer.
- [ANSWER] part should contain only one of the following types: boolean, number, category,
list[category], list[number]
- Don’t give any additional text, comments or explanation in the [ANSWER] part.

Table: <table as string>
Table columns: <list of column names>
Question: <question>
Answer:
Let’s think step by step.

946

Self-Refine Step 1: Prompt for extracting relevant columns

You are an AI assistant specialized in data analysis.
Given a table with the following columns: <list of column names>
Task: Select the most relevant columns that are necessary to answer the following ques-
tion:"question"

Step-by-step reasoning:
1. Identify the key concepts in the question.

2. Match these concepts to the relevant columns in the table.

3. If multiple columns could provide similar information, select the most informative ones.

4. Ensure that the chosen columns are minimal yet sufficient.

Example:
Question: "What is the average salary of employees in the IT department?"

• Step 1: Key concepts → "average salary", "IT department"

• Step 2: Relevant columns → ["Salary", "Department"]

• Step 3: "Salary" contains numerical salary data; "Department" helps filter IT employees

• Step 4: Selected columns → ["Salary", "Department"]

IMPORTANT:

• Your step-by-step reasoning MUST NOT exceed 5 sentences.

• Your final JSON MUST be included within the response.

• If you fail to comply, your response will be discarded as invalid.

Your Task:
Perform the same step-by-step reasoning for the given question and return the final selected
columns in strict JSON format.

Example Outputs:
Example 1 (if the question is about employee age):
json
["Age"]

Example 2 (if the question is about employee salary growth):
json
["Salary", "YearsAtCompany", "PercentSalaryHike"]

Example 3 (if the question is about employee job satisfaction and department):
json
["Department", "JobSatisfaction"]

CRITICAL REQUIREMENTS:

• You MUST return your response in two parts:

1. Your step-by-step reasoning.

947

2. The final validated response in STRICT JSON FORMAT.

• The JSON response must be the last thing in your answer and formatted correctly.

Now, provide your response in the exact same JSON format.

Self-Refine Step2: Prompt for validating the retrieved columns

You have selected the following columns to answer the question: <question>

Selected columns: <list of retrieved column names>
Your previous reasoning was: <list of column names>
Full list of available columns in the dataset: <list of column names>

Validation Task
• If the selection is correct and minimal, return "VALID".

• If the selection is incorrect, incomplete, or redundant, return the corrected column list in strict
JSON format.

• If additional columns are necessary, add them.

• If some columns are not needed, remove them.

New Validation Rules
• You must justify any change in column selection.

• If the selection is "VALID", explain why.

• If changes are needed, return only the corrected column list in JSON format.

IMPORTANT:

• Your step-by-step reasoning MUST NOT exceed 5 sentences.

• Your final JSON MUST be included within the response.

• If you fail to comply, your response will be discarded as invalid.

Example Outputs (JSON format)
If the selected columns are correct and minimal:
json
"VALID"

If some columns are incorrect or missing:
json
["Department", "EmployeeCount"]

If unnecessary columns are included:
json
["Age"]

948

CRITICAL REQUIREMENTS
• You MUST return your response in two parts:

1. Your step-by-step reasoning.
2. The final validated response in STRICT JSON FORMAT.

• The JSON response must be the last thing in your answer and formatted correctly.

Now, validate the selected columns and return your response in the correct JSON format.

Self-Refine Step 3: Prompt for generating an answer

You are a data analysis assistant. Given the following table: <retrieved columns>

Your previous reasoning was: <response>

Step-by-step reasoning before answering:
1. Identify the key data points in the table that are needed to answer the question.

2. Analyze how these data points interact with each other.

3. Perform any necessary calculations or logical deductions.

4. Formulate the final answer based on these steps.

IMPORTANT:

• Your step-by-step reasoning MUST NOT exceed 5 sentences.

• Your final JSON MUST be included within the response.

• If you fail to comply, your response will be discarded as invalid.

<question>

Answer format (strict JSON):
• Boolean: {"answer": true}

• Category: {"answer": "category_name"}

• Number: {"answer": 42}

• List of Categories: {"answer": ["category_1", "category_2"]}

• List of Numbers: {"answer": [1, 2, 3]}

CRITICAL REQUIREMENTS:
• You MUST return your response in two parts:

1. Your step-by-step reasoning.
2. The final validated response in STRICT JSON FORMAT.

• The JSON response must be the last thing in your answer and formatted correctly.

Now, provide the answer.

949

Self-Refine Step 4: Prompt for validating a generated answer

You have the following table: <table as string>
Given question: <question>
Proposed answer: <answer>
Your previous reasoning was: <response>

Validation Task
1. Check whether the provided answer is logically correct based on the table data.

2. If it is incorrect or incomplete, identify the error.

3. Provide the corrected answer if needed, using strict JSON format.

4. If the original answer is correct, return "VALID" (as a JSON string).

CRITICAL REQUIREMENTS
• The response MUST BE STRICTLY IN JSON FORMAT with NO explanations, no addi-

tional text, and no reasoning.

• DO NOT include "Reasoning" or "Validation" steps in the output.

• ONLY return one of the following:

– "VALID" (as a JSON string)
– A corrected JSON answer in the exact same format as the proposed answer.

IMPORTANT:

• Your step-by-step reasoning MUST NOT exceed 5 sentences.

• Your final JSON MUST be included within the response.

• If you fail to comply, your response will be discarded as invalid.

Example Outputs
If the answer is correct: "VALID"
If the answer needs correction: {"answer": 42}

DO NOT RETURN outputs like:

• "The answer is correct. Here is my reasoning..."

• "After analysis, I found a mistake. The correct answer is: ..."

Now, validate the answer and provide the response in the correct format.

C Multi-hop Questions

Examples of questions from the Data Bench dataset that strictly require more than two columns to answer
(for our dataset, three columns).

950

Multi-hop questions

Q: Which 6 Pokémon from the second generation have the highest attack stats?
Columns used: [’generation’, ’attack’, ’name’]

Q: Is the profession with the highest Openness the same as the profession with the highest
Conscientousness?
Columns used: [’Profession’, ’Openness’, ’Conscientousness’]

Q: Does the profession with the lowest Emotional_Range also have the lowest level of
Conversation?
Columns used: [’Profession’, ’Emotional_Range’, ’Conversation’]

Q: What is the average Extraversion level for the profession with the highest number of records (n)?
Columns used: [’Profession’, ’Extraversion’, ’n’]

Q: Has the author with the highest number of followers ever been verified?
Columns used: [’author_id<gx:category>’, ’user_followers_count<gx:number>’,
’user_verified<gx:boolean>’]

Q: Is the author who has the most favourites also the one with the most retweets?
Columns used: [’author_id<gx:category>’, ’user_favourites_count<gx:number>’,
’retweets<gx:number>’]

Q: Is the most mentioned user also the most retweeted mentioned user?
Columns used: [’author_id<gx:category>’, ’mention_names<gx:list[category]>’,
’retweets<gx:number>’]

Q: Does the author with the most retweets also have the most replies?
Columns used: [’author_id<gx:category>’, ’retweets<gx:number>’, ’replies<gx:number>’]

D Table Sampling: Optimal k

The Figure 2 shows the F1 metric for the three approaches. It can be seen that for our table of 20 columns,
it will be optimal to search for the top 3 most suitable columns. The results are also presented in the
Table 1.

1 2 3 5 10 15
10

20

30

40

k – number of extracted columns

F1
(%

)

bge-large-en-v1.5 + BM25
bge-large-en-v1.5

BM25

Figure 2: F1 scores for the "Table Sampling" column extraction method using different vector representations,
shown for various values of the hyperparameter k (number of columns extracted).

E Analysis of Prompting Techniques

951

1 3 5 10

40

50

60

70

80

Reasoning Paths

E
xa

ct
M

at
ch

(%
)

Llama-8b
Llama-8b-CoT

Llama-70b
Llama-70b-CoT

Figure 3: Self-Consistency results for DataBench lite test set. Exact Match is a metric with custom comparison
function presented by competitions authors, see Section 4. Reasoning Paths means the number of times the model
was called to generate an answer, see Section 5.2. CoT denotes Chain-of-Thought.

952

