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Abstract

This paper presents our system developed for
the SemEval-2025 Task 9: The Food Hazard
Detection Challenge. The shared task’s objec-
tive is to evaluate explainable classification sys-
tems for classifying hazards and products in
two levels of granularity from food recall inci-
dent reports. In this work, we propose text aug-
mentation techniques as a way to improve poor
performance on minority classes and compare
their effect for each category on various trans-
former and machine learning models. We ex-
plore three word-level data augmentation tech-
niques, namely synonym replacement, random
word swapping, and contextual word insertion.
The results show that transformer models tend
to have a better overall performance. None
of the three augmentation techniques consis-
tently improved overall performance for clas-
sifying hazards and products. We observed a
statistically significant improvement (P < 0.05)
in the fine-grained categories when using the
BERT model to compare the baseline with each
augmented model. Compared to the baseline,
the contextual words insertion augmentation
improved the accuracy of predictions for the
minority hazard classes by 6%. This suggests
that targeted augmentation of minority classes
can improve the performance of transformer
models.

1 Introduction

Foodborne diseases affect millions of people every
year. The World Health Organization highlights
that food contamination leads to more than 200
diseases, resulting in severe health complications
and affecting the socioeconomic stability of com-
munities and nations (World Health Organization,
2024). There is a vast amount of publicly available
information on food safety-related websites. Given
the importance of early detection of food hazards,
there is a need to timely and accurately analyze all
this publicly available information to detect food
hazards.

Food Hazard Classification System
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Figure 1: An overview of our developed system’s archi-
tecture.

The SemEval-2025 Task 9: Food Hazard Detec-
tion Challenge (Randl et al., 2025) was proposed
to facilitate automated classification of food haz-
ards in food safety-related documents. It stimu-
lates research that combines food safety and natural
language processing (NLP) for explainable multi-
class classification of food recall incident reports.
SemEval-2025 Task 9 includes two sub-tasks: clas-
sifying coarse food hazard and product categories
(ST1) (hazard-category, product-category),
and fine-grained hazard and product categories
(ST2) (hazard, product).

A significant challenge with the SemEval-2025
Task 9 dataset is its substantial class imbalance.
There is a long-tailed distribution across classes,
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especially in the fine-grained categories. This im-
balance can give poor performance of classifiers,
especially for deep learning (DL) models (Henning
et al., 2023). Text augmentation techniques have
been shown to mitigate the effects of imbalanced
data to an extent (Khan and Venugopal, 2024). Text
augmentation can range from simple string manipu-
lations, such as those used in Easy Data Augmenta-
tion (EDA) (Wei and Zou, 2019), to more advanced
methods involving transformer-based text genera-
tion (Henning et al., 2023). This helps to boost the
representation of minority classes, which can result
in a more balanced dataset and robust models.

We investigated three basic text augmentation
techniques (synonym replacement, contextual word
insertion, and random word swapping) to boost
the representation of under-represented classes in
multi-class classifications of food recall incident
reports. Our main research question is:

Can text augmentation techniques on under-
represented classes enhance a food hazard multi-
class classifier’s performance?

We evaluated the performance of various ma-
chine learning (ML) algorithms and encoder-only
transformer models, both in their baseline form and
after applying each augmentation technique. To
participate in the task, only one submission was al-
lowed. We submitted our predictions in the official
test set after we evaluated our models in the devel-
opment set, selecting the best-performing ones for
each category. In ST1, our system ranked 15" out
of 27 participants, with an Fj-macro score differ-
ence of 0.0613 from the first, and in ST2, it ranked
11" out of 26, with a 0.0944 score gap from the top
(see subsection 6.1 for the exact scores). Our work
provides valuable insights into the efficacy of text
augmentation in this field. !

2 Related Work

2.1 Research on food hazard classification

Little work has been conducted using text data for
fine-grained food hazard classification (Randl et al.,
2024Db), as most existing literature focused on bi-
nary classification of food hazards. A recent study
by Randl et al. (2024b) introduced the dataset that
we used in SemEval-2025 Task 9 and they bench-
marked multiple ML and DL algorithms. Randl
et al. (2024b) proposed a large language model
(LLM)-in-the-loop framework named Conformal

'Our code is available at https://github.com/WFSRDat
aScience/SemEval2025Task9

In-Context Learning (CICLe), that leveraged Con-
formal Prediction to optimize context length for
predictions of a base classifier. By using fewer,
more targeted examples, performance increased
and energy consumption reduced compared to reg-
ular prompting.

2.2 Text augmentation for minority classes

Data augmentation creates synthetic data from an
existing dataset by inserting small changes into
copies of the data (Shorten et al., 2021). Data aug-
mentation mitigates the class imbalance issues for
DL (Henning et al., 2023). According to Shorten
et al. (2021), Data augmentation approaches in
NLP can be divided in two types: symbolic and
neural. Symbolic techniques, such as rule-based
EDA (Wei and Zou, 2019), employ simple word-
level operations like synonym replacement and ran-
dom insertion. Symbolic techniques are effective
in small datasets. Neural techniques rely on aux-
iliary neural networks such as back-translation or
generative augmentation. A recent study showed
that LLMs for data augmentation, such as to gen-
erate new samples, increase accuracy and address
class imbalance in skewed datasets (Gopali et al.,
2024). In our study, we explore both symbolic and
simple neural augmentation strategies, such as con-
textual words insertion using BERT, to improve
classification performance.

Additionally, in the SemEval shared task of 2023,
Al-Azzawi et al. (2023) explored the effects of
data augmentation, particularly back translation,
on minority classes. They compared it with aug-
menting the entire dataset using transformer-based
models. They observed that targeting the under-
represented classes for augmentation proved more
effective than broad dataset augmentation. Follow-
ing their approach, we also focus our augmentation
strategies on the minority classes rather than the
entire dataset.

3 Data

The Food Recall Incidents dataset used in SemEval-
2025 Task 9 contains 6,644 food-recall announce-
ments in the English language (Randl et al., 2024a).
This dataset is split into 5,082 announcements in
the train set, 565 in the development set, and 997
in the test set. The data is collected from 24 differ-
ent websites (Table 4). The samples consist of a
title and text describing announcements from a
recalled food product and includes other metadata.
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Experts manually labeled each sample into four
coarse classes of hazards (hazard-category) and
products (product-category) and fine-grained
classes (hazard and product). The classes and
the number of classes per category are listed in
Table 10, and examples are presented in Table 11.

The distribution of the four categories’ classes
is highly imbalanced, showing a long-tail effect
(Figure 4, Figure 5). In coarse categories, 75%
of classes have 513 samples in hazard-category
and 263 in product-category, while the largest
classes contain 1,854 and 1,434 samples, respec-
tively. This imbalance is even more severe in the
fine-grained hazard and product classes, with
75% of classes having at most four samples per
product and 24 samples per hazard, while the
largest class has 185 samples per product and 665
samples per hazard.

4 Methods

We used ML and DL and implemented multiple
data augmentation strategies. The next sections
describe this in more detail.

4.1 Machine Learning

We used Term Frequency-Inverse Document Fre-
quency (TF-IDF) (Sparck Jones, 1972) represen-
tation of text as input to our ML classifiers. We
trained different classifiers and evaluated their per-
formance on both subtasks for each category. The
classifiers used were Linear Support Vector Ma-
chine (SVM), Decision Tree (DT), Random Forest
(RF), Logistic Regression (LR), Multinomial Naive
Bayes (NB), and K-Nearest Neighbors (KNN). We
used the implementation from Scikit-learn library?.

4.2 Deep learning

We used deep learning-based transformer language
models for sequence classification (Vaswani et al.,
2023). We chose encoder-only models that directly
produce an input sequence’s representation, which
is fed into a classification head to make predictions.
We trained various transformers for a sequence
classification task, including BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), DistilBERT
(Sanh et al., 2020), and ModernBERT (Warner
et al., 2024) (see subsection A.4 for more details).
We leveraged the Hugging Face’s Transformers
library® (Wolf et al., 2020).

2https ://scikit-learn.org/stable/
Shttps://huggingface.co/docs/transformers

Sentence

Certain Stella Artois brand Beer may be unsafe
due to possible presence of glass particles
CwW certain notable stella by artois brand beer may
be judged unsafe primarily due to his possi-
ble presence of glass particles

SR Certain Frank stella Artois brand Beer may
be insecure imputable to potential presence
of glass particles

RW Certain Stella Artois brand Beer may due be
unsafe to presence possible of glass particles

Operation
Original

Table 1: Examples of text augmentation techniques
applied to a title of a food recall using contextual
word insertion (CW), synonym replacement (SR), and
random word swapping (RW).

4.3 Data augmentation on minority classes

In addition to baseline training of the aforemen-
tioned models, we explored how data augmenta-
tion affected the performance of minority classes
for each category.

We employed three different augmentation
strategies using the NLP AUG library* (Ma, 2019):
random word swapping (RW), synonym replace-
ment (SR), and insertion of contextual words (CW).
RW swapping randomly swaps adjacent words. SR
substitutes similar words from a lexical database
for the English language (WordNet (Miller, 1995)).
CW uses contextual word embeddings from BERT
to find the top similar words and insert them for
augmentation. An example of each technique ap-
plied to a title is shown in Table 1.

For each strategy, we generated new samples
in the training data for minority classes per cate-
gory by altering titles and texts to preserve their
inherent meaning while maintaining the annotated
classes. For coarse categories (hazard-category
and product-category), we augmented classes
with fewer than 200 samples by generating 200
samples for each class. For fine-grained categories
(hazard and product), we created 100 samples for
classes with fewer than 100 samples for the hazard
category and 50 samples for the product category.
After examining the entire class distributions, we
chose these numbers of added samples and thresh-
olds for low-support classes because they reflect a
compromise between improving the representation
of minority classes and maintaining low computa-
tional costs, but not completely resolving the im-
balance issue. We first iterated through the existing
data samples for each under-represented class of
each category. We then distributed the specified

*https://nlpaug.readthedocs.io/
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total number of augmentation samples proportion-
ally across these samples (adjusting the final one
to ensure the addition matches the set target num-
ber of samples to add) to generate new samples
based on the augmentation technique used. A pseu-
docode description is provided in subsection A.5
and its impact on class statistics is provided in sub-
section A.6. All methods were implemented in
Python.

5 Experiments

In the next subsections, we further describe the pre-
processing, hyperparameter fine-tuning, and evalu-
ation details.

5.1 Preprocessing

Preprocessing included removal of HTML markup
and special characters (newlines, tabs, Unicode
character symbols) using regular expressions from
title and text and text normalization such as
whitespace standardization. This preserves seman-
tic content while eliminating and filtering unneces-
sary formatting.

5.2 Hyperparameter fine-tuning

We fine-tuned the hyperparameters of baseline and
augmented models on the development set using
the Tree-structured Parzen Estimator (TPE) sam-
pler in the Optuna hyperparameter optimization
framework (Akiba et al., 2019). TPE is a Bayesian-
based optimization approach that uses a tree struc-
ture to link between the hyperparameters and our
objective function (maximizing F-macro score per
category) to discover the optimal hyperparameters.

We ran ten trials per model and for each aug-
mentation technique. For the ML for ST1, we ran
50 trials since the computation time was low. We
optimized the parameters of the TF-IDF vector-
izer, such as the minimum document frequency
(min_df), and hyperparameters applicable to each
classifier for ML, such as the maximum number
of iterations (max_iter) in SVM, and the learn-
ing rate scheduler, batch size, and epochs for DL
(subsection A.8). All experiments involving trans-
former models were conducted on different GPU
clusters (subsection A.3)°.

SOur best fine-tuned models are available at https://hu
ggingface.co/collections/DataScienceWFSR/semeval
2025task9-food-hazard-detection-680f43d99cc294f
617104be2.

Model hazard- product- hazard product| ST1 ST2
category category

SV Myase 0.701 0.626 0.544 0.234 0.682 0.396
SV Mcw 0.655 0.642 0.519 0.256 0.649 0.396
SV Msr 0.707 0.674 0.511 0.234 0.693 0.379
SV Mrw 0.687 0.643 0.542 0.246 0.682 0.401
LRyase 0.666 0.665 0.511 0.203 0.680 0.368
LRcw 0.713 0.682 0.457 0.209 0.702 0.347
LRsr 0.698 0.677 0.454 0.233 0.691 0.354
LRrw 0.666 0.676 0.522 0.216 0.673 0.380
DTyase 0.542 0.445 0.405 0.012 0.484 0.208
DTew 0.617 0.491 0.427 0.029 0.544 0.230
DTsr 0.576 0.488 0.464 0.037 0.526 0.252
DTrw 0.612 0.475 0.506 0.056 0.542 0.283
RFyase 0.691 0.523 0.499 0.129 0.609 0.318
RFow 0.708 0.597 0.566 0.169 0.642 0.380
RFsr 0.688 0.578 0.455 0.188 0.633 0.331
RFrw 0.698 0.546 0.567 0.202 0.612 0.397
KN Npase 0.552 0.497 0.384 0.157 0.527 0.294
KNNcw 0.565 0.490 0.376 0.169 0.534 0.309
KNNsr 0.552 0.507 0.389 0.163 0.537 0.305
KNNgrw 0.500 0.491 0.397 0.152 0.515 0.299
N Biase 0.553 0.570 0.306 0.064 0.568 0.203
NBcw 0.599 0.586 0.405 0.175 0.603 0.310
NBsr 0.588 0.574 0.444 0.140 0.589 0.314
N Brw 0.603 0.617 0.383 0.167 0.631 0.300
BERTyase 0.747 0.757 0.581 0.170 0.753 0.382
BERTcw 0.760 0.761 0.671 0.280 0.762 0.491
BERTsgr 0.770 0.754 0.666 0.275 0.764 0.478
BERTrw 0.752 0.757 0.651 0.275 0.756 0.467
DistilBERTyase | 0.761 0.757 0.593 0.154 0.760 0.378
DistilBERTcw | 0.766 0.753 0.635 0.246 0.763 0.449
DistilBERTsg | 0.756 0.759 0.644 0.240 0.763 0.448
DistilBERTrw | 0.749 0.747 0.647 0.261 0.753 0.462
RoBERT apase 0.760 0.753 0.579 0.123 0.755 0.356
RoBERTacw 0.773 0.739 0.630 0.000 0.760 0.315
RoBERTasr 0.777 0.755 0.637 0.000 0.767 0.319
RoBERTarw 0.757 0.611 0.615 0.000 0.686 0.308
ModernBERTy,.d 0.781 0.745 0.667 0.275 0.769 0.485
ModernBERTcw| 0.761 0.712 0.609 0.252 0.741 0.441
ModernBERTsgr | 0.790 0.728 0.591 0.253 0.761 0.434
ModernBERTrw| 0.761 0.751 0.629 0.237 0.759 0.440

Table 2: F}-macro scores for each model in the official
test set given by the organizers utilizing the text field
per category and subtasks scores (ST1 and ST2) rounded
to 3 decimals. With bold, we indicated the higher score
per category and subtask score.

5.3 Evaluation on leaderboard

We submitted our results to the leaderboard for
both subtasks, which calculated the final score by
averaging the hazard F-macro (computed on all
samples) with the product F}-macro (computed
only on samples with correct hazard predictions)
for the coarse (ST1) and fine-grained categories
(ST2). For example, if all hazards were predicted
correctly, but all products were predicted incor-
rectly, the overall result would be a 0.5 F-macro
score (subsection A.7).

6 Results

The next subsections show quantitative results for
each model in the official test set using the text
field (trained in training and development sets) and
an error analysis on the BERT baseline model ver-
sus its augmented-trained versions.

6.1 Quantitative results

Transformer models outperformed ML across
all categories, as shown in Table 2, with the
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Modern BE RTy,s. leading across transformer
models, in the baseline version, in all categories
except product-category.

Among ML, SVM, LR, and RF showed
competitive  performance: LRcw  scored
highest in hazard-category (0.713) and
product-category (0.682); RFgry in hazard
(0.567), and SV Mcw in product (0.256). Among
the transformer models, Modern BE R1sg scored
highest in the hazard-category with a score of
0.790, while BERTcw scored highest in other
categories. Augmentation increased performance
but was not consistent across the categories. It
was more pronounced in ST2 categories than ST1
categories, with the largest score increase (0.11)
between BE RTy,s. and BE R1T -y augmentation
in the product category.

To understand the impact of augmentation, we
conducted individual pairwise Kruskal-Wallis tests
comparing the F’-macro scores on the BE R T}
model with the augmented versions, training each
version three times per category (Table 9). Sta-
tistical significance (P < 0.05) was found in
product-category with RW, in hazard with all
augmentation techniques, and product with CW
and RW (Table 3). This indicates that augmenta-
tion techniques for BERT enhanced performance
in minority classes more effectively in fine-grained
categories than in coarse categories.

We submitted a combination of BERT and
RoBERTa models for each category to the leader-
board (subsection B.3), which resulted in an F3-
macro score of 0.761 for ST1 and of 0.453 for
ST2 in the test set. These models were chosen
since they indicated the best Fj-macro scores on
the development set. The other models were also
evaluated on the test set, but not included in the
leaderboard. The best scores achieved on ST1 was
0.769 and ST2 was 0.491, indicated in bold in Ta-
ble 2. Moreover, experiments using only title
were conducted (where their results can be found
in Table 8). We continue with the error analysis
on the models using text field since we observed
better performance.

6.2 Error Analysis - Confusion Matrices

We investigated the performance and shortcomings
on the BERT model, which improved most with
the CW technique compared to the baseline.
When comparing the majority and minority
classes that were augmented, the BERIcw
model predicted the minority classes slightly bet-

Category Cw RW SR

hazard-category  0.5127 0.2752 0.2752
product-category 0.2752 0.3758 0.0463
hazard 0.0495 0.0495 0.0463
product 0.0463 0.0495 0.5127

Table 3: Raw P-values from individual pairwise Kruskal-
Wallis tests between B E RT},s. model and each of the
three augmentation techniques (rounded up to 4 deci-
mals).
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Figure 2: Confusion matrices comparing the perfor-
mance of the BERTy,s. and BERT¢w models in the
test set across the four categories showing the changes
in the model’s performance for minority and majority
class predictions.

ter than BE RTj,se, With a rise from 39 to 41 for
hazard-category and from 261 to 277 for hazard
(around 6% increase) (Figure 2). However, the
model predicted the majority classes slightly worse,
decreasing from 656 to 632 for hazard, show-
ing that there is a trade-off between improving
the predictions for the minority versus the major-
ity classes. Additionally, while the augmentation
slightly improved the prediction of majority classes
for the product-category, it decreased the minor-
ity class predictions from 106 to 101 samples.
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(a) Visualization of a correctly classified sample for
hazard-category in baseline model for the true
chemical class.
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(c) Visualization of a wrongly classified sample for
hazard in baseline model for the true nuts class.
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(b) Visualization of a wrongly classified sample for
hazard-category in CW augmentation model for the
true chemical class.
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(d) Visualization of a correctly classified sample for
hazard in CW augmentation model for the true nuts
class.

Figure 3: Visualizations of SHAP values for samples in the ground-truth classes of hazard-category and hazard,
based on predictions from the BERT},s. and BERTw models. Pink text indicates positive contributions toward
predicting this class, while blue text indicates negative contributions. Text which does not contribute in each sample

has been truncated.

6.3 Error Analysis - SHAP

We use SHapley Additive exPlanations (SHAP)®
to further analyze BERT’s prediction behavior.
Figures 3a and 3b illustrate the SHAP values
for a sample that was correctly classified with
BE RTy,se, but was misclassified with BE RTcow
in the hazard-category, visualizing the contri-
butions for the correct chemical class. Figures
3c and 3d show the SHAP values for a sample
misclassified with BFE RTy,,. but correctly clas-
sified with BERTcw in hazard, visualizing the
contributions for the correct nuts class. For the
hazard-category, the BERT},s. correctly iden-
tifies features such as ‘illegal dye’ (in pink color),
while the CW augmentation has more negative
(blue) contributions that push the model’s predic-
tion away from the correct class. For the hazard
category, although both models focus on significant
terms like ‘pine nuts’, the baseline model focuses
on negative contributions like ‘Latina Creamy
Tomato’ resulting in a misclassification which may
imply that the model associates these features incor-
rectly with different hazards. This misclassification
pattern could serve as a basis for future investiga-
tion, further exploring and explaining the model’s
predictions to improve its performance and reliabil-

ity.
7 Limitations

While multiple experiments have been conducted,
some limitations could be addressed in future stud-
ies. The dataset used was exclusively in English,

®https://shap.readthedocs.io/en/latest/

and the augmentation techniques applied were lim-
ited to word-level adjustments. Future research
could explore more sophisticated augmentation
methods, such as LLMs, to generate new samples
and verify their quality. Incorporating datasets in
other languages could provide insight into the ef-
fectiveness of augmentation techniques. Further
investigation could also focus on optimizing the
number of augmented samples for minority classes
to enhance classification performance, especially
for food hazard classification, where reliable mod-
els are required to ensure safety. Lastly, to enhance
even further the classifiers’ performance, more
complex architectures such as ensemble or hier-
archical approaches could be used to compare their
effectiveness on augmentation in the food hazard
classification task.

8 Conclusion

We showed that word-level text augmentation
can enhance multi-class classification in minority
classes. We used various machine learning and
transformer models on the SemEval-2025 Task 9 to
assess the effects of these augmentations. Leverag-
ing the text field, we discovered that transformers
tend to outperform ML. Augmentation techniques
showed a slight increase of F}-macro scores, but
this effect was not consistent across all augmenta-
tions. Comparing BE R1},s. With each augmenta-
tion technique, a statistical significant improvement
was found for fine-grained categories, which indi-
cates that augmenting minority classes can improve
the performance of transformers for these classes.
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A Dataset and Experiments Details

A.1 Dataset Details

In this section, tables and figures related to the
statistics of the provided dataset are presented. Ta-
ble 11 shows some sample titles and text from the
dataset along with their annotated classes. Table 10
presents the number and the names of the annotated
classes. Figure 4 and Figure 5 show the distribu-
tions of hazard and product classes in coarse and
fine-grained categories indicating the long-tail dis-
tributions that follow, while Figure 6 presents the
distribution of occurrences in the dataset per coun-
try and year. Table 4 displays the site domain that
the samples have been sourced along their number
of samples.

Domain Samples
www.fda.gov 1740
www.fsis.usda.gov 1112
www.productsafety.gov.au 925
www.food.gov.uk 902
www.lebensmittelwarnung.de 886
www.inspection.gc.ca 864
www.fsai.ie 358
www.foodstandards.gov.au 281
inspection.canada.ca 124
www.cfs.gov.hk 123
recalls-rappels.canada.ca 96
tna.europarchive.org 52
wayback.archive-it.org 23
healthycanadians.gc.ca 18
www.sfa.gov.sg 11
www.collectionscanada.gc.ca 8
securite-alimentaire.public.lu 6
portal.efet.gr 4
www.foodstandards.gov.scot 3
www.ages.at 2
www.accessdata.fda.gov 1
webarchive.nationalarchives.gov.uk 1
www.salute.gov.it 1
www.foedevarestyrelsen.dk 1

Table 4: Data sources of public food safety author-
ity websites, ordered by support number of the given
dataset. Table adapted from Randl et al. (2024a). It
contains also the sources for the non-English data.
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A.2 Preprocessing Dataset Details

The html.parser was leveraged using the Beau-
tifulSoup’ package to remove the HTML content
from the data. The regular expression that was used
to remove the special characters is the following:

"[\t\n\r\u200bl|//|&nbsp'

A.3 System Configurations Details

The experiments were run on different machines
using Python version 3.10.16. For the fine-tuning
and training of transformer models, NVIDIA A100
80GB and NVIDIA GeForce RTX 3070 Ti were uti-
lized. For reproducibility, we used seed = 2025 as
a seed number by employing it in PyTorch, NumPy,
and Random packages. To run the BERT model
two extra times and calculate the statistical signifi-
cance, we used seed = 2024 and 2026. Moreover,
the package versions and their respective URLs
that were leveraged can be found in Table 5.

Library Version | URL

Transformers 4.49.0 https://huggingfac
e.co/docs/transfor
mers/index

PyTorch 2.6.0 https://pytorch.or
g/

SpaCy 3.84 https://spacy.io/

Scikit-learn 1.6.0 https://scikit-lea
rn.org/stable/

Pandas 2.2.3 https://pandas.pyd
ata.org/

Optuna 4.2.1 https://optuna.org
/

NumPy .0.2 https://numpy.org/

NLP AUG 1.1.11 https://nlpaug.rea
dthedocs.io/en/lat
est/index.html

BeautifulSoup4 | 4.12.3 https://www.crummy
.com/software/Beau
tifulSoup/bs4/doc/
#

Table 5: Python libraries and their versions with URLs
used for the code implementation of the paper.

A.4 Transformer Models Details

In this section, we explain the encoder-only trans-
former models’ details and architectures we used
in the experiments. For BERT (Devlin et al.,
2019), the bert-base-uncased® is used which
consists of 110M parameters, 12 encoder layers,
a hidden state size of 768, a feed-forward hidden
state of 3072, and 12 attention heads, serving as

"https://www.crummy . com/software/BeautifulSou
p/bs4/doc/

8https://huggingface.co/google—bert/bert—bas
e-uncased
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a foundational pre-trained transformer model. For
RoBERTa (Liu et al., 2019), the roberta-base’
(case-sensitive) is leveraged and has 125M param-
eters, structured with 12 encoder layers, a 768-
dimensional hidden state, a 3072-dimensional feed-
forward network, and 12 attention heads, which
is trained on a large corpus leveraging dynamic
masking. For DistilBERT (Sanh et al., 2020), the
distilbert-base-uncased! is utilized, which is
a lighter BERT variant having 66M parameters and
6 encoder layers while maintaining similar hidden
state size and attention heads with BERT. For the
ModernBERT (Warner et al., 2024), we used the
ModernBERT-base !! (case-sensitive), which con-
tains 149M parameters, 22 encoder layers, hidden
state of 768, an intermedia size of 1152, and 12
attention heads. It is trained on 2 trillion tokens,
extending the token length to 8192 and incorpo-
rating other architectural enhancements to make
it faster, lighter, and with better performance than
other BERT variants.

A.5 Text Augmentation Details

In Algorithm 1, the function for creating new sam-
ples using augmentation is presented. Starting from
the inputs of the function, it accepts: a threshold 7
which is the number of samples that a class could
contain to be a minority class, the number of sam-
ples to add S per minority class, a class counts C
that contains the number of samples per class, an
augmentation function F' that accepts the sample
and the number of samples to create, the original
training dataset D and the category (e.g. hazard)
that we want to augment its classes. The function
begins with finding the minority classes by getting
the classes with samples less than the given thresh-
old. Then, for each minority class, the respective
samples are collected and the number of samples
that need to be augmented for each sample is calcu-
lated by dividing the total samples over the number
of samples of the specific class rounding down the
result to the nearest integer. For each sample, then
the augmentation function is applied and creates
new samples, except for the last sample which is
augmented for the remaining number of samples
needed. The new samples are inserted into the orig-
inal training dataset and the function returns the

’https://huggingface.co/FacebookAI/roberta-b
ase

Yhttps://huggingface.co/distilbert/distilbert
-base-uncased

11https://huggingface.co/answerdotai/ModernBER
T-base

augmented set.

Algorithm 1 Function of creating samples for clas-
sification with augmentation

Require: Threshold of class number of samples 7, Total sam-
ples to add S, Class counts C', Augmentation function F',
Original training dataset D, Category to augment cat

1: function CREATE_ AUGMENTED_SAMPLES(7, S, C, F,
D, cat)

2 minority_classes < {c| C[c] < 7}

3 a_s <+ 0 > augmented_samples

4 for c in minority_classes do

5: samples < {d € D | d[cat] = c}

7 for sample in samples do

8 if is the last sample then

9: N + S — [N x (|samples| — 1)]

10: end if

11: new_samples < F(sample, N)
12: a_s < new_samples U {a_s}
13: end for

14: end for

15: augmented_set < D Ua_s

return augmented_set
16: end function

A.6 Dataset Classes Statistics

In Table 6, a comparison between the classes’ statis-
tics before and after applying augmentation per
category is presented. For hazard-category and
product-category, the number of samples that
have been created are 200 for classes that have un-
der 200 samples. For hazard and product, the
number of samples that have been added are 100
and 50, respectively, for classes that have under
100 samples.

A.7 F; Macro Evaluation Metric

For both subtasks, the evaluation metric given by
the organizers was the F'j-macro score on the pre-
dicted and the annotated classes. The rankings are
based on the hazard classes, meaning that if pre-
dictions for both hazard and product are correct, it
will get a 1.0 score, while if the hazard predictions
are correct but for product are wrong, it will score
0.5. The accurate scoring function can be seen in
Algorithm 2.

A.8 Hyperparameters Details

To tune the hyperparameters, the Optuna opti-
mization framework was employed, optimizing
based on F}-macro scores. For the ML models,
the TF-IDF vectorizer parameters, such as mingy,
max_df etc., were optimized, along with specific
parameters for each model, such as max_iter for
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Hyperparameter Search Space
C {0.1, 1, 5, 10}
mazx_iter {100, 1000, 5000}

n_estimators
max_depth (DT)
max_depth (RF)
max_features

{100, 200, 300}

{100, 200, 300}

{100, 1000, 5000}

{1000, 5000, 10000, 50000}

Statistic hazard-category product-category
Initial Augmented Initial Augmented
Count 10 22
Mean 508.2 608.2 231.0 349.2
Standard Deviation | 702.75 635.57 325.83 270.79
Minimum 3 203 5 205
25% 53.25 253.25 19.25 212.25
50% 210.5 310.5 132.5 260.5
75% 513.5 263.5 333.25
Maximum 1854 1434
Total Samples 5082 6082 5082 7682
Statistic hazard product
Initial Augmented Initial Augmented
Count 128 1022
Mean 39.7 130.33 4.97 54.87
Standard Deviation | 102.19 81.14 10.97 9.72
Minimum 3 101 1 51
25% 4 104 1 51
50% 8.5 108 2 52
75% 24.25 122 4 54
Maximum 665 185
Total Samples 5082 16682 5082 56082

Table 6: Comparison between the initial and af-
ter augmentation classes’ statistics per category
(hazard-category, product-category, hazard,
product) in the training dataset.

Algorithm 2 Function for computing score for each
subtask.

Require: hazard true ht, product true pt, hazard predictions
hp, product predictions pp

1: function COMPUTE_SCORE(ht, pt, hp, pp)

2 Fi_hazards < Fi-macro(ht, hp)

3 cm < (hp == ht) > correct_mask
4: F\_products < Fy-macro(pt[cm], pp[ccm])
5
6:

return 3 (Fy_hazards + F1_products)
end function

SVM and LR, and alpha for NB. The utilized hy-
perparameters for each model, category, and field
are presented in Tables 12 to 17. When the SpaCy
tokenizer'? is used, English stopwords from SpaCy
are also removed from the given text. Balanced
class weight was used in SVM, LR, RF, and DT
models.

For the transformer models, batch_size,
epochs, and lr_scheduler were optimized across
all model variants over 10 trials. For all models, the
learning rate was set at 5.0e—5, and the maximum
token length that the tokenizer can generate was set
at 128, as no significant differences in performance
with higher maximum token length were observed.
In Tables 18 to 21, the utilized hyperparameters for
each model, category, and field are listed.

The search space for each hyperparameter used
during the tuning can be found in Table 7.

Zhttps://spacy.io/api/tokenizer

n_neighbors {3,5,7,9,11}
wetghts {uniform, distance}
alpha {0.01,0.1, 1, 5}
analyzer {word, char}
tokenizer {-, SpaCy}
min_df {1,2,5}

max_df {0.1,0.3,0.5}

{1, 1), (1,2),(,3), 1,4, 1,5),
(2,3),(2,4),2,5),3,5)}

{8, 16, 32}

{3,5, 10}

{lin, cos, cosRestarts}

ngram_range

batch_size
epochs
lr_scheduler

Table 7: Search space for each hyperparameter used
in Optuna optimization trials for ML and transformer
models. For learning rate schedulers: cos (cosine an-
nealing), cosRestarts (cosine annealing with restarts),
and lin (linear).

B More Results and Explainability
Analysis

B.1 Results using title

In Table 8, we present the experimental results on
the test set using the title field for both ML and
transformer models. As with the results using text,
transformer models overall outperformed the ML
models, although they were lower than using text.
The best models per category are: BFERTrw
for hazard-category (0.670), RoBFE RT apRyy for
product-category (0.736), DistilBERTgg for
hazard (0.503), and RFj,se for product (0.287).
Among the ML models, SVM, LR, and RF demon-
strated competitive performance across the cate-
gories, similar to the performance observed us-
ing only the text field. While there was vari-
ability between the baseline and augmented mod-
els, a slight, consistent increase was observed in
product-category and hazard when using trans-
former models.

B.2 Statistical Significance Experiments

The mean F}-macro scores for the BERT model ex-
periments (both baseline and augmented versions,
each run three times) are presented in Table 9.

B.3 Official Submitted Models

Since only one submission was allowed during the
evaluation phase, the predictions of the models that
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Model hazard- product- hazard product| ST1 ST2
category category

SV Myase 0.644 0.692 0.436 0.250 0.670 0.363
SV Mcw 0.641 0.675 0.402 0.240 0.657 0.343
SV Msr 0.646 0.699 0.435 0.259 0.674 0.364
SV Mpw 0.646 0.690 0.432 0.253 0.670 0.372
LRpase 0.596 0.695 0.419 0.261 0.636 0.359
LRcw 0.627 0.670 0.428 0.263 0.649 0.361
LRsr 0.612 0.660 0.425 0.234 0.639 0.350
LRrw 0.634 0.647 0.442 0.269 0.644 0.374
DTyase 0.491 0.478 0.330 0.036 0.483 0.183
DTeow 0.534 0.541 0.277 0.031 0.553 0.164
DTsr 0.565 0.449 0.349 0.081 0.495 0.226
DTrw 0.513 0.453 0.298 0.057 0.493 0.185
RFyase 0.611 0.633 0.420 0.287 0.616 0.369
RFcw 0.592 0.640 0.446 0.232 0.615 0.367
RFsr 0.638 0.527 0.422 0.207 0.590 0.329
RFpw 0.629 0.635 0.372 0.244 0.638 0.328
KN Npase 0.519 0.598 0.349 0.187 0.566 0.299
KNNcw 0.554 0.508 0.341 0.167 0.545 0.275
KNNsgr 0.541 0.569 0.306 0.152 0.566 0.255
KN Ngrw 0.536 0.551 0.335 0.174 0.558 0.278
N Bhpase 0.597 0.641 0.366 0.221 0.624 0.318
NBcw 0.588 0.611 0.360 0.185 0.609 0.305
NBsr 0.597 0.593 0.349 0.180 0.600 0.290
N Brw 0.585 0.629 0.390 0.195 0.608 0.315
BERTyase 0.668 0.636 0.372 0.177 0.653 0.284
BERTcw 0.654 0.714 0.502 0.249 0.693 0.392
BERTsr 0.650 0.707 0.489 0.259 0.681 0.389
BERTgrw 0.670 0.735 0.477 0.250 0.700 0.372
DistilBERTyase | 0.653 0.579 0.396 0.248 0.613 0.334
DistilBERTcw | 0.631 0.725 0.486 0.264 0.687 0.395
DistilBERTsr | 0.640 0.695 0.503 0.262 0.667 0.400
DistilBERTrw | 0.644 0.701 0.496 0.267 0.672 0.392
RoBERT apqse 0.608 0.629 0.384 0.076 0.619 0.246
RoBERTacw 0.668 0.692 0.460 0.000 0.686 0.230
RoBERTasr 0.639 0.718 0.471 0.000 0.673 0.236
RoBERTarw 0.636 0.736 0.479 0.001 0.690 0.240
ModernBERTyqsd 0.586 0.671 0.393 0.275 0.627 0.353
ModernBERTcw| 0.649 0.731 0.423 0.266 0.688 0.372
ModernBERTsr | 0.616 0.679 0.422 0.254 0.646 0.364
ModernBERTrw| 0.641 0.697 0.385 0.263 0.668 0.351

Table 8: F-macro scores in the official test set given
by the organizers utilizing the title field per category
and subtasks scores (ST1 and ST2) rounding up to 3
decimals. With bold, we indicate the higher score per
column.

Model  hazard- product- hazard product

category category

BERTy.se 0.757 0.769 0.594 0.186
BERTcw 0.768 0.756 0.658 0.284
BERTgrw 0.751 0.752 0.662 0.256
BERTgr 0.771 0.75 0.652 0.189

Table 9: Mean F}-macro scores per category for each
BERTy,s. and with augmentation models running
three times using as random seed numbers: 2024, 2025,
and 2026.

were submitted and were found to have the best F? -
macro scores on the development set for each cate-
gory are: RoBERT ap,s. for hazard-category
with 0.880 Fj-macro score, RoBERT agry for
product-category with 0.750 Fj-macro score,
BERTcow for hazard with 0.682 F-macro score,
BERTRw for product with 0.260 F}-macro
score (all trained in text field). Then, these models
were trained in both train and dev sets and provided
their predictions on the test set. When submitting
this combination of models, an ST1 score of 0.761

and an ST2 score of 0.4529 were achieved, which
are our official leaderboard scores.
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Category Number  Names of Classes

of Classes

Hazard Category 10 ‘allergens’, ‘biological’, ‘foreign bodies‘, ‘fraud’, ’chemical’, ‘other hazard’, ‘packaging defect’, ‘organoleptic
aspects’, ‘food additives and flavourings’, ‘migration’

Product Category 22 ‘meat, egg and dairy products’, ‘cereals and bakery products’, ‘fruits and vegetables’, ‘prepared dishes and snacks’,
‘seafood’, ‘soups, broths, sauces and condiments’, ‘nuts, nut products and seeds’,‘ices and desserts’, ‘cocoa and
cocoa preparations’, ‘coffee and tea’,‘confectionery’, ‘non-alcoholic beverages’, ‘dietetic foods’, ‘food supplements’,
“fortified foods’, ‘herbs and spices’, ‘alcoholic beverages’, ‘other food product / mixed’, ‘pet feed’, ‘fats and oils’, ‘food
additives and flavourings’, ‘honey and royal jelly’,‘food contact materials’, ‘feed materials’, ‘sugars and syrups’

Hazard 128 ‘listeria monocytogenes’, ‘salmonella’, ‘milk and products thereof’, ‘escherichia coli’, ‘peanuts and products thereof” ...
‘dioxins’, ‘staphylococcal enterotoxin’, ‘dairy products’,‘sulfamethazine unauthorised’, ‘paralytic shellfish poisoning
(psp) toxins’

Product 1068 ‘ice cream’, ’chicken based products’, ‘cakes’, ‘ready to eat - cook meals’, ‘cookies’ ... ‘breakfast cereals and

products therefor’, ‘dried lilies’, ‘chilled pork ribs’, ‘tortilla chips cheese’, ‘ramen noodles’

Table 10: Names and number of total classes of the four annotated categories. For hazard and product, some
classes are ommited. For product, the total number of classes along with the test data is 1,142.

Title Text hazard- hazard product-  product
category category
Wismettac ~ Asian Wismettac Asian Foods, Inc., Santa Fe Springs, CA is recalling 17.6 allergens  soybeans  soups, soups
Foods Issues Allergy oz packages of Marutomo Dashi Soup Base because they may contain and broths,
Alert on Undeclared undeclared wheat and soy. ... Consumers with questions may contact the products  sauces
Wheat and Soy in company at recall @wismettacusa.com. thereof and condi-
Dashi Soup Base ments
Kader Exports Re- Kader Exports, with an abundance of caution, is recalling certain con- biological salmonella seafood shrimps
calls Frozen Cooked signments of various sizes of frozen cooked, peeled and deveined shrimp
Shrimp Because of sold in 1Ib, 1.51b., and 2Ib. retail bags. ... Consumers with questions may
Possible Health Risk  contact the company at +91-022-62621004/ +91-022-62621009, Mon-Fri
10:00hrs -16:00hrs GMT+5.5.
Recall Notification: Case Number: 024-94 Date Opened: 07/01/1994 ... Product: SMOKED  biological listeria meat, egg smoked
FSIS-024-94 CHICKEN SAUSAGE Problem: BACTERIA Description: LISTERIA monocyto- and dairy sausage
Total Pounds Recalled: 2,894 Pounds Recovered: 2,894 genes products

Table 11: Samples from the Food Recall Incidents dataset with title, text and the annotated categories.
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Figure 4: Distributions of hazard-category and product-category for classes occurrences.
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Figure 5: Distributions of hazard and product for classes occurrences. The classes in the x-axis have been omitted
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Figure 6: Distributions of occurrences per country (left figure) and per year (right figure) published in the given

dataset.
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Hyperparameters for SVM

hazard-category

product-category

Parameters baseline CW SR RW baseline CW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
C 5 1 1/10 10/1 1/10 10 1 5/10
mazx_iter 1000 / 5000 5000/ 100 5000 1000/ 100 5000/ 100 1000 5000 100 / 5000
mazx_features 50000 50000 50000/ 10000 50000 / 5000 50000 50000 50000 50000
analyzer char word word / char char char / word char / word char char / word
tokenizer - SpaCy / - SpaCy / - - - - - -
max_df 0.5/0.3 0.1 05/03 0.5 0.5/0.1 0.1/05 0.1 0.3/0.5
min_df 1/5 1/2 1 1/2 172 5 2/1 5/2
ngram_range  (2,5)/(1,5)  (1,3)/(2,4) (1,2)/3,5 2,5/2,49 ((1,5/(1,49 (@2,5/(1,3) @3,5) (2,5 /(1,3)
hazard product
Parameters baseline CW SR RW baseline CW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
C 5710 1/10 5 1/5 10 5/1 10/5 5/10
max_iter 1000 / 5000 5000/ 1000 1000 / 5000 1000 / 5000 100 / 1000 1000/ 100 1000 5000/ 1000
max_features 50000 10000 / 50000 50000 / 10000 50000 5000 5000 / 50000 50000 10000 / 50000
analyzer char char word word / char char / word char char char
tokenizer - - - - -/ SpaCy - - -
maz_df 0.5/0.1 0.5/0.1 0.1/0.3 0.3/0.5 0.1/0.5 0.1 0.3 0.5/0.1
man_df 5/1 1/2 2/1 5/2 1/5 5/2 2/1 5/1
ngram_range 2,4)/(2,5) (1,3)/(@3,5) (1,3)/(1,2) 1,2)/2,49 2,4/, 2,5/(,5 @(3,5/0,4) (1,4 /(2,4

Table 12: Hyperparameters for SVM model in each category across baseline, CW, SR, RW variants. Parameters for
experiments using title and text fields are separated by a slash (/). Default scikit-learn tokenizer is used when
not specified and analyzer is word.

Hyperparameters for LR

hazard-category

product-category

Parameters baseline CwW SR RW baseline CW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
C 5/10 10 10/5 10 10/5 5/10 10/5 10/5
max_iter 5000 / 1000 1000 / 100 1000 5000 / 1000 100 / 5000 5000/ 100 5000 100/ 1000
mazx_features 10000 50000/ 10000 10000/ 50000 50000 / 10000 50000 50000 10000 / 50000 50000
analyzer char / word word char char char char word / char word
tokenizer - SpaCy / - - - - - - SpaCy /-
max_df 0.5 0.1/0.3 0.5 0.1/0.5 0.5/0.1 0.1 0.5/0.1 0.5/0.3
min_df 1/5 2 2/1 2/1 1/2 5 5/2 5/1
ngram_range (3,51/(1,3) (1,3)/(1, 1) 2,4)/@3.,5) 3,5/(,5 @G.5/1,4 (1,5/7@2,5) 1,2)/2,5) 1,4)/(1, 1)
hazard product
Parameters baseline CwW SR RW baseline CwW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
C 10/5 10 10/5 5/10 10 10/5 10/5 5/10
max_iter 100/ 1000 100 / 5000 100 100/ 5000 1000 / 5000 5000/ 100 1000 / 5000 1000
max_features  10000/50000 10000 / 5000 50000 / 5000 50000 / 5000 50000 50000/ 10000 50000 /5000 50000 /5000
analyzer char char char char / word char word / char char / word char
tokenizer - - - -/ SpaCy - SpaCy / - -/ SpaCy -
mazx_df 0.1/03 0.5/0.1 0.5 0.1 0.1/0.3 0.3/0.1 0.3/0.1 0.3/0.1
max_iter 100/ 1000 100 / 5000 100 100 / 5000 1000 / 5000 5000/ 100 1000 / 5000 1000
man_df 1 5/2 5 1/2 1/5 1/2 1 1/2
ngram_range 2,4) 2,4/(1,4) 1,4)/(2,4) 2,5/, 1) 2,4/3,5 1A,1)/@2,3) 2,3)/(1, 1) (3,5)/2,3)

Table 13: Hyperparameters for LR model in each category across baseline, CW, SR, RW variants. Parameters for
experiments using title and text fields are separated by a slash (/). Default scikit-learn tokenizer is used when
not specified and analyzer is word.
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Hyperparameters for DT

hazard-category

product-category

Parameters baseline CW SR RW baseline CW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
max_depth 100/ 300 100 /200 300/ 100 200/ 100 100 200/ 100 100/ 300 200/ 300
max_features  5000/50000 5000 /50000 50000 50000/ 10000 50000/ 10000 50000 10000 10000 / 5000
analyzer word / char word word / char word char / word word char / word word
tokenizer SpaCy / - SpaCy - - - SpaCy / - -/ SpaCy -
max_df 0.5/0.1 0.5 0.1/03 0.1 0.1/05 0.1 0.3/0.1 0.1
min_df 5/1 5 1/5 1 1 572 1/2 5/1
ngram_range  (1,3)/(2,5) (1,4/(1,5) (1,3)/(2,5) L,4/1,1 (L4/1,5 Q,4H/1,5 2,49/1,2) 1,49/(1,2)
hazard product
Parameters baseline Cw SR RW baseline CwW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
max_depth 300/ 100 200/ 300 200 200 300 1007300 200 200 /300
max_features 50000 /5000 5000 5000/ 10000 1000/ 50000 50000 1000 1000 1000
analyzer char / word char / word word word word char / word char word / char
tokenizer - -/ SpaCy - -/ SpaCy -/ SpaCy -/ SpaCy - SpaCy /-
max_df 05/03 0.1/0.5 0.1/03 0.3 0.1 0.5/0.1 0.5/0.1 0.3/0.1
min_df 2/5 2 1/5 2 5/1 2/5 2/1 2/5
ngram_range  (3,5)/(1,1) (1,5/(1,2) (1,2)/1,1) (1,5) (1,1)/(2,3) 2,3) (2,3)/(2,5 (1,4)/@2,5)

Table 14: Hyperparameters for DT model in each category across baseline, CW, SR, RW variants. Parameters for
title and text fields are separated by a slash (/) unless they are the same. Default scikit-learn tokenizer is used
when not specified and analyzer is word.

Hyperparameters for RF
hazard-category product-category

Parameters baseline CwW SR RW baseline CW SR RW

title / text title / text title / text title / text title / text title / text title / text title / text
max_depth 5000/ 100 100/ 1000 5000/ 100 5000/ 1000 1000/ 100 5000 / 1000 1000/ 100 1000/ 100
n_estimators 100/ 300 100 200 300/200 300 300 200 200/ 300
max_features  10000/50000 10000 /50000 10000 / 50000 50000 50000/ 10000 10000 / 50000 10000 50000
analyzer char word / char char char word word / char word word
tokenizer - - - - SpaCy SpaCy / - - SpaCy
max_df 0.3 0.1/03 0.1 0.1/0.3 0.1/0.3 0.1 0.3/0.1 0.1
min_df 2 1 5/1 5/2 1/2 5/2 2/1 5/2
ngram_range 3,5)/(2,5) (1,5) 1,4)/(1,5) 3,5 1/(1,5) (1,2)/(1,1) (1,2)/(1,5) 1,5/, 1) (1,2)/(1,3)

hazard product

Parameters baseline Ccw SR RW baseline CwW SR RW

title / text title / text title / text title / text title / text title / text title / text title / text
max_depth 5000/ 1000 1000 1000/ 100 1000 / 5000 1000 1000 1000 5000/ 1000
n_estimators 300 /200 300/ 100 200/ 300 200 300 200 200/ 100 300/200
maz_features 50000 10000 /50000 5000 /10000 5000 /50000 50000/10000 50000 /5000 10000 5000 / 50000
analyzer word / char char char char char / word char word word
tokenizer SpaCy / - - - - -/ SpaCy - SpaCy /- SpaCy
max_df 0.1 0.5/0.1 0.5 0.5/0.3 0.3 0.3/0.1 0.1 0.3/0.1
min_df 2/1 2/1 5/1 2 2/5 1/5 1/5 2/1
ngram_range 1,2)/(2,5) (1,4 /(1,5) 2,4)/(1,5) (1,5)/(@3,5) 3,517/1,4) 2,5 /(1,3) (1,H/(1,2) (1,3)/(1, 1)

Table 15: Hyperparameters for RF model in each category across baseline, CW, SR, RW variants. Parameters for
experiments using title and text fields are separated by a slash (/). Default scikit-learn tokenizer is used when
not specified and analyzer is word.
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Hyperparameters for KNN

hazard-category

product-category

Parameters baseline CwW SR RW baseline CwW SR RwW
title / text title / text title / text title / text title / text title / text title / text title / text
n_neighbors 3/7 713 11/3 5 5 11/5 3/5 5
weights distance distance distance distance uniform / distance distance distance distance
analyzer char / word char / word char / word char word / char char char char
tokenizer - - - - SpaCy / - - - -
mazx_df 0.3/0.1 0.5/03 05/03 0.5/0.1 0.3/0.1 0.3/0.1 0.1 0.1
min_df 2/5 2 1 5 1 1/5 572 5/1
ngram_range  (1,3)/(1,4) (1,3) 1,4 (2,3)/(2,4) 1,1)/@3,5) (1,57@2,4) (1,4) (1,5)/(3,5)
hazard product
Parameters baseline CW SR RW baseline CwW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
n_neighbors 7 11/7 9/7 7 3 3 715 3
weights distance distance distance distance distance uniform / distance distance uniform
analyzer word / char char char char char char word / char char
tokenizer - - - - - - - -
max_df 0.1 0.3 0.3/0.1 0.3 03/0.5 0.5/0.1 0.1 0.1/03
min_df 2/5 1 2/5 5/1 5 1/2 5/2 2/5
ngram_range (1,3)/(3,5) (2,5/2,4) (2,3)/2,4) (1,5) (2,3)/(1,5) 2,5) (1,4 1/@2,5) 2,5)

Table 16: Hyperparameters for KNN model in each category across baseline, CW, SR, RW variants. Parameters for
experiments using title and text fields are separated by a slash (/). Default scikit-learn tokenizer is used when
not specified and analyzer is word.

Hyperparameters for NB
hazard-category product-category

Parameters baseline CwW SR RW baseline Ccw SR RW

title / text title / text title / text title / text title / text title / text title / text title / text
alpha 0.01 0.01 0.01 0.01 0.01 0.01 0.1/0.01 0.1/0.01
analyzer word / char char / word char / word word char char / word word / char word
tokenizer - - - -/ SpaCy - - - SpaCy
max_df 0.1/0.5 0.570.1 0.3/0.5 0.1 0.1 0.1/0.3 0.1 0.3/0.1
min_df 2/5 2 1/2 1/2 2 2 1/5 2/1
ngram_range (1,3)/(2,5) (3,5/2,4) (1,49/2,3) 2,5/1,3) G,5/(,49 2,5/1,1) (1,2)/(3,5) (1, 1)

hazard product

Parameters baseline CwW SR RW baseline Ccw SR RW

title / text title / text title / text title / text title / text title / text title / text title / text
alpha 0.01 0.01 0.1/0.01 0.01 0.01/0.1 0.01 0.1 0.1/0.01
analyzer char word word / char char char / word char char word / char
tokenizer - - - - -/ SpaCy - - -
max_df 0.1/0.3 0.570.1 0.5/70.1 0.3/0.5 0.1/0.5 0.3/0.1 0.1 0.1
min_df 1/5 2 2/5 1 5 1 5/2 1
ngram_range (2,4)/3,5 (1,1)/2,4) (1,2)/(1,5 (2,5/@3,5 @2,5/1,1) 2,5/2,49 (1,3)/2,5 (1,1)/(,3)

Table 17: Hyperparameters for NB model in each category across baseline, CW, SR, RW variants. Parameters for
experiments using title and text fields are separated by a slash (/). Default scikit-learn tokenizer is used when
not specified and analyzer is word.

Hyperparameters for BERT

hazard-category

product-category

Parameters baseline Ccw SR RW baseline Ccw SR RW
title / text title / text  title / text  title / text title / text title / text title / text title / text
batch_size 8/32 32/16 16/8 16/32 16/8 32/8 8/32 32
epochs 5/10 5/3 10 3 5/10 5 5/3 3/5
Ir_scheduler  cosRestarts / cos lin lin lin / cos cosRestarts  cosRestarts /lin  cosRestarts / lin cosRestarts
hazard product
Parameters baseline Ccw SR RW baseline Ccw SR RW
title / text title / text  title / text  title / text title / text title / text title / text title / text
batch_size 16/8 16/8 16 8 16/8 32 32/16 32
epochs 10 10/3 3/5 3/5 10 3/10 5 3/5
Ir_scheduler lin / cos lin / cos lin cos / lin lin cosRestarts / cos  cos/cosRestarts  lin / cosRestarts

Table 18: Hyperparameters for BERT model in each category across baseline, CW, SR, RW variants. Parameters
for experiments using title and text fields are separated by a slash (/). Learning rate schedulers: cos (cosine
annealing), cosRestarts (cosine annealing with restarts), and lin (linear).
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Hyperparameters for RoOBERTa

hazard-category

product-category

Parameters baseli CW SR RW baseline CwW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
batch_size 8/32 16/32 8/16 32/16 32/16 8/32 32 16
epochs 3/10 10 10/5 10/5 5/10 3/5 3/10 10/3
lr_scheduler lin/ cos lin / cosRestarts  cosRestarts /lin  cosRestarts cosRestarts lin / cosRestarts lin cos
hazard product
Parameters baseli CW SR RW baseline CwW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
batch_size 16 32/16 32 16/32 16/32 16 32 32/16
epochs 10 10 3 3/5 5/10 5 5 10
Ir_scheduler lin/cosRestarts lin cos / cosRestarts cos / lin cosRestarts / cos  cosRestarts / cos  cosRestarts / cos lin

Table 19: Hyperparameters for ROBERTa model in each category across baseline, CW, SR, RW variants. Parameters
for experiments using title and text fields are separated by a slash (/). Learning rate schedulers: cos (cosine

annealing), cosRestarts (cosine annealing with restarts), and lin (linear).

Hyperparameters for DistiiBERT

hazard-category

product-category

Parameters baseline CwW SR RW baseline CwW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
batch_size 8 32/16 16 16/8 16/8 8 16/32 16/32
epochs 10/5 10/5 10/5 10/3 3/10 5 5 5/3
lr_scheduler cos cosRestarts cos /lin lin / cosRestarts  lin / cosRestarts lin cos / cosRestarts cos
hazard product
Parameters baseline CW SR RW baseline CwW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
batch_size 8 8/16 32 32 8/32 32/16 16 16/32
epochs 10 3/5 5 3/10 10 10 3/10 5
lr_scheduler lin cos /lin cosRestarts / cos  lin/ cosRestarts  cos / cosRestarts cos cosRestarts / lin lin

Table 20: Hyperparameters for DistilBERT model in each category across baseline, CW, SR, RW variants.
Parameters for experiments using title and text fields are separated by a slash (/). Learning rate schedulers: cos
(cosine annealing), cosRestarts (cosine annealing with restarts), and lin (linear).

Hyperparameters for ModernBERT

hazard-category

product-category

Parameters baseline CwW SR RW baseline Cw SR RwW
title / text title / text title / text title / text title / text title / text title / text title / text
batch_size 16/8 8/32 16 8/32 32/8 8/32 16/8 16/32
epochs 3/5 5 5/3 10/5 5/10 5/10 5 10
Ir_scheduler cos cosRestarts / lin cos / lin cosRestarts / cos lin / cos cos / cosRestarts  cosRestarts /lin ~ cos / cosRestarts
hazard product
Par ters baseli CwW SR RW baseline CcwW SR RW
title / text title / text title / text title / text title / text title / text title / text title / text
batch_size 32/8 16/8 8 32/8 8 8 8 8
epochs 10 5/10 5 5 10 5 10/5 3
Ir_scheduler  cosRestarts/lin  cos/cosRestarts lin / cosRestarts cos cos cosRestarts lin / cos cos

Table 21: Hyperparameters for ModernBERT model in each category across baseline, CW, SR, RW variants.
Parameters for experiments using title and text fields are separated by a slash (/). Learning rate schedulers: cos
(cosine annealing), cosRestarts (cosine annealing with restarts), and lin (linear).
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