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Abstract

In response to the growing challenge of pro-
paganda through online media in online news,
the increasing need for automated systems that
can identify and classify narrative structures
in multiple languages is evident. We present
our approach to the SemEval-2025 Task 10
Subtask 2, focusing on the challenge of hier-
archical multi-label, multi-class classification
in multilingual news articles. Working with a
two-level taxonomy of narratives and subnar-
ratives in the Ukraine-Russia War and Climate
Change domain, we present methods to handle
long articles based on how they are naturally
structured in the dataset, propose a hierarchical
classification MLP with respect to the narrative
taxonomy structure, and establish a continual
learning training strategy that takes into advan-
tage the multilingual nature of our data and tries
to examine how different language orders affect
performance. Our final system was evaluated
in five languages, achieving competitive results
while demonstrating low variance compared to
similar systems in our leaderboard position.

1 Introduction

From early days, propaganda has been a tool in
shaping people’s beliefs, actions, and behaviours.
The most effective propaganda techniques often
go undetected, influencing readers without even
their knowledge (Muller, 2018). With the rapid
growth of the Internet and the Web revolutionizing
the way people share and access information, it
has also opened doors to propagandistic techniques
being disseminated more effectively, reaching vast
audiences worldwide (Tardáguila et al., 2018).

At research level, most work on propaganda de-
tection has focused on high-resource languages
like English, and little effort has been made for
low-resource languages. Similarly, previous work
examined content at the document level (Rashkin
et al., 2017), where they work focused on analyzing
entire articles to differentiate between propaganda,

trusted news, and satire rather than analysing spe-
cific narrative structures. SemEval-2020 Task 11,
which focused on propaganda and news analysis,
was introduced to address this (Da San Martino
et al., 2020) featuring the classification of portions
of documents across 44 propagandistic techniques.

SemEval-2025 Task 101 (Piskorski et al., 2025;
Stefanovitch et al., 2025) was introduced as a sig-
nificant advancement that focuses on the automatic
identification of specific narrative structures, their
classification, and the roles of entities involved in
online articles in a multilingual setting.

This study focuses on the Narrative Classifica-
tion subtask of SemEval-2025 Task 10. Unlike
previous tasks, it centers around the identification
of both the broader narratives of articles and their
specific subnarratives. In this paper, we explore
how hierarchical MLPs can model this nested tax-
onomy structure, investigate methods for handling
long article inputs, and examine how different lan-
guage orders can affect model performance in a
continual learning training strategy.

Researchers have studied whether language or-
der affects catastrophic forgetting in continual
learning, but optimal order could vary across tasks
and language sets. Our research builds on their find-
ings, attempting to address the following research
question: "Is there an optimal language order in
language-specific continual learning for narrative
classification? If so, which is the best and which is
the worst?"

During our participation in the challenge, our
primary approach, consisting of an ensembled ver-
sion of a continual learning training strategy was
evaluated in five languages achieving top-five rank-
ings in across all languages2. Our analysis revealed
that the order in which our model is trained matters

1https://propaganda.math.unipd.it/
semeval2025task10/index.html

2https://propaganda.math.unipd.it/
semeval2025task10/leaderboardv2.html
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significantly in model performance, with certain
language orders outperforming others.

Reproducibility

The complete codebase for this work, including
data preprocessing, model architectures, and train-
ing methodologies, is available as documented
Jupyter notebooks in our public GitHub repository.

1.1 Related Work

1.1.1 Related Tasks
Coan et al. (2021) present a classification task that
focuses solely on contradictory claims of climate
change in a similar hierarchical taxonomy. Their
work emphasized on structuring claims into mul-
tiple levels of specificity following a parent-child
relationship. Piskorski et al. (2022) builds upon
climate change, by showcasing an effective and
interesting way of handling limited training data
using data augmentation techniques by maintain-
ing the meaning intact, and thus also preserve label
consistency. In a different but conceptually rel-
evant domain, Kotseva et al. (2023) developed a
hierarchical classification system for COVID-19
misinformation narratives, spanning over 58,000
articles in a similar multilingual setting.

1.1.2 Continual Learning in NLP
Continual learning (Wang et al., 2024) has gained
attention in NLP for its ability to transfer knowl-
edge across different tasks. The major challenge in
this is catastrophic forgetting phenomenon, where a
continually trained model tends to forget the knowl-
edge it has learned (Kirkpatrick et al., 2017).

In the NLP area, continual learning has been
established in different domains. Mi et al. (2020)
demonstrates this with a dialogue system that is
trained on sequential data. In a next token pre-
diction task, Gogoulou et al. (2024) experimented
with training a model in different languages us-
ing continual learning. That is, the model was
trained first on a single language, then the training
would continue with a different language, and so
on. They discovered that the language order in
which the model is trained, plays a crucial role – a
carefully selected language order also seemed to
reduce catastrophic forgetting.

1.2 Dataset

The dataset is composed of news articles in five lan-
guages: Bulgarian, Russian, Portuguese, English,

and Hindi. These articles were collected and anno-
tated specifically for the Ukraine-Russia War and
Climate Change domains.

The data is divided into training (1,781 articles),
development (178), and test (460) sets. The distri-
bution of training data across languages is shown
in Appendix Figure 5.

The articles vary significantly in length, a char-
acteristic that introduces challenges we discuss in
Section 1.3 and address in Subsection 2.1.

1.3 Challenges

The initial challenge resides in the way our labels
are structured for classification. Each article can
belong to one or more narratives that each map to
one or more subnarratives, creating this two-level
hierarchy. This presents challenges not only in hier-
archical depth, since both levels must be predicted
correctly, but also in managing the large number
of possible labels. The scale of this can be better
understood by looking at Figure 1, which shows
a partial taxonomy of narratives and subnarratives
for the Ukraine-Russia War domain.

Figure 1: Sample taxonomy for Ukraine-Russia War,
showing the hierarchical relationship between narratives
(inner ring) and their corresponding subnarratives (outer
ring).

Cross-lingual Variations Working across multi-
ple languages presents several specific challenges.
Different languages tend to favor certain narrative
patterns over others due to geopolitical factors. Ap-
pendix Figure 4 demonstrates this, with the Russian
language focusing solely on the Ukraine-Russia
War Taxonomy, while others exhibit a more bal-
anced distribution between domains.

The combination of cross-lingual variations with
limited training data poses data imbalance issues,
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where certain narrative-subnarrative pairs appear
much more frequently than others, something we
discuss about in Subsection 2.3.

Article Length Variability Articles vary signif-
icantly in length, ranging from short to extensive
(mean 403 words, std dev 237 words; between 88
to 924 words across languages).

Most (best) text classification models are specifi-
cally trained (or fine-tuned) to give good sentence
embeddings; however, these models typically have
a maximum token limit (usually 512 or 1024 to-
kens), which becomes problematic when process-
ing large articles into representations that our clas-
sification models can then understand.

We carefully handle longer news articles in Sec-
tion 2.1 to overcome a situation where article rep-
resentation adversely affects the classification task.

2 System Overview

2.1 Article Representation
When articles are very long, most NLP work han-
dles this by either including summarization pre-
process step of the article into their pipeline (Tsirm-
pas et al., 2023), or paragraph splitting / hierarchi-
cal encoding (Dai et al., 2022).

We propose an alternative chunking approach,
one that follows the natural structure of news
articles in the dataset. Specifically, we ob-
served that the articles consistently followed a
header/body/footer organization, and we used this
to perform a more targeted, semantically informed
splitting.

However, combining the separated sections into
a single embedding that describes the whole article
is also something we need to address. We explored
various strategies for doing so:

• Average pooling between sections: Average
of all section embeddings, preserving each
section equally.

• Weighted average based on section length:
Similar to averaging, but sections contribute
proportionally to their length.

• Sum of section embeddings: Element-wise
addition of all section embeddings, essentially
preserving all information.

2.2 Model Architecture
Initial experiments with simple classification mod-
els like logistic regression served as our first base-
lines by treating the problem as a flat classification

Multi-Head (Base) Model Architecture

Article
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Shared Layer
(BatchNorm + ReLU)
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Subnarrative
Head n
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Sub
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Sub
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Figure 2: Architecture of the base multi-head model
showing the flow from article embedding through shared
layer to narrative and subnarrative heads.

without considering the label hierarchy. This ap-
proach revealed limited performance, and led us to
explore approaches that could leverage this hierar-
chy.

However, the problem is structured in such a way
that it differs from a two-head classification model,
where we have a head for classifying narratives and
a separate for subnarratives. Each narrative has
its own set of subnarratives creating this natural
hierarchy.

We developed a base multi-head, multi-task
model approach where we have a single head for
predicting narratives, then multiple heads for pre-
dicting the subnarratives for the given narrative
hierarchy. We then explored several variants of this
model as for experiments.

2.2.1 Multi-Head Base Architecture
Our base architecture (Figure 2) consists of three
main components:

• A shared base layer that learns features and
provides its output to the lower layers.

• A narrative head for predicting the top-level
narratives.

• Multiple heads, one per narrative hierarchy,
each predicting the corresponding subnarra-
tives for that hierarchy.

2.2.2 Hierarchical Variants
Concatenation Model Our base model treated
narrative and subnarrative predictions indepen-
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Concatenation Model Architecture
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Figure 3: Architecture overview of the architecture for
the concatenation model, showing how narrative predic-
tions are combined with shared layer output to feed into
subnarrative heads.

dently. That is, subnarrative predictions were com-
puted as:

P (subnarrj |x) = σ(h(x)) (1)

where h(x) is the output of the shared layer (the
gray box) for article embedding x.

We enhanced this by concatenating the narrative
probabilities with the shared layer output:

P (subnarrj |x) = σ([h(x);P (narri|x)]) (2)

where narri is the parent narrative of subnarrj .
This is intuitive, because:

• If the probability of the narrative is high, the
subnarrative head will be more likely to pre-
dict the relevant subnarratives.

• If the probability is low, the model will learn
to ignore the corresponding subnarratives.

Multiplication Model As an alternative to con-
catenation, we implemented element-wise multipli-
cation between the output of the shared layer and
the narrative probabilities.

P (subnarrj |x) = σ(h(x)⊙ P (narri|x)) (3)

where h(x) is the shared layer output for article
embedding x.

This conceptually creates a stronger hierarchi-
cal dependency, acting as a natural "gate" in the
hierarchy:

• If the narrative probability is close to 0, the
corresponding subnarrative head’s input will
be scaled down, effectively disabling that sub-
narrative head.

• If the narrative probability is close to 1, the
shared layer output passes through somewhat
unaffected.

2.3 Loss Function
Our loss function is designed to handle both imbal-
anced labels and the need to stay consistent in our
hierarchical predictions.

Weighted BCE We use a weighted version of
Binary Cross Entropy to account for the class im-
balance. Each label is assigned a weight that is
proportional to its frequency in the dataset. This
way, rare labels contribute proportionally more to
the loss.

Hierarchy and Misclassifications We penalize
inconsistencies in the hierarchy and label miss-
classifications. A complete loss break down is
presented in Appendix A.2.

2.4 Continual Learning
Our initial experiments with the base architectures
revealed significant performance instability across
training runs (Section 3). This instability problem
motivated us to try an alternative approach, one that
changes the way the model learns from the training
data resembling it in a way knowledge builds upon
existing foundations.

Just as learning Ukrainian becomes easier when
you know Russian, we hypothesized that this se-
quential order can help our model find meaningful
patterns per language. In particular, for our prob-
lem:

• Russian language can provide a good base for
the URW taxonomy.

• Bulgarian builds on top of Russian as both are
Slavic languages.

• Every single language that follows keeps en-
riching the model’s understanding with its
unique characteristics.
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Upon reaching our target language for classifica-
tion during the training phase, we give the model
more time to adapt by increasing its training pa-
tience and lowering the learning rate.

3 Experiments and Results

Below we present the comparison results across
model variants, embedding models, and aggrega-
tion strategies. We report both Coarse-F1 (for nar-
ratives) and Fine-F1 (for subnarratives), along with
their standard deviations. However, the primary
focus of the task is on the Fine-F1 score.

All comparisons are performed specifically for
the English validation dataset, as it demonstrated
the most balanced distribution of narratives in the
dataset across the two domains and is widely rec-
ognized as the most prominent language in NLP
research.

Each model was run five times, and the results
were aggregated to ensure a fair comparison. We
evaluated our experiments with two embedding
models: KaLM3 and Stella4. We specifically chose
these embedding models because they are both mul-
tilingual, instruction-based that achieved high per-
formance on the MTEB (Massive Text Embedding
Benchmark) leaderboard5.

During the stage of transforming our article sec-
tions into meaningful numbers that our classifi-
cation models can understand, we instructed the
embedding models to:

"Produce an embedding useful for detecting rel-
evant war- or climate-related narratives from a
taxonomy."

3.1 Model Architecture and Embedding
Performance

3.1.1 Hierarchical Architecture Variants
Table 1 shows the mean performance across model
base variants. The high standard deviation (±0.02-
0.03) indicates run-to-run instability.

Concat variant shows a sign of effectiveness in
comparison to the Simple model by slightly out-
performing it. Multiplication variant lags behind
for both approaches, indicating that the hard-gating
mechanism might be too restrictive. If our narra-
tive predictions are not confident or even, and most

3https://huggingface.co/HIT-TMG/
KaLM-embedding-multilingual-mini-instruct-v1.5

4https://huggingface.co/NovaSearch/stella_en_
1.5B_v5

5https://huggingface.co/spaces/mteb/
leaderboard

Metric Simple Concat Mult

Coarse-F1 0.489 ± 0.03 0.497 ± 0.02 0.477 ± 0.02
Coarse std 0.385 ± 0.01 0.386 ± 0.01 0.384 ± 0.01
Fine-F1 0.329 ± 0.03 0.333 ± 0.02 0.311 ± 0.02
Fine std 0.320 ± 0.02 0.327 ± 0.02 0.321 ± 0.01

Table 1: Mean performance comparison between the
base hierarchical model and its variants (averaged over
5 runs).

importantly, not correct, the subnarrative head will
receive very weak input because of the hard gating.

3.1.2 Embedding Model Comparison
Table 2 shows performance between embedding
models.

Metric KaLM Stella

Coarse-F1 0.497 ± 0.02 0.450 ± 0.02
Fine-F1 0.333 ± 0.02 0.298 ± 0.02

Table 2: Performance comparison across
embedding models.

KaLM embeddings consistently appear to out-
perform Stella in all metrics.

However, when analyzing different aggregation
strategies, our experiments revealed different pat-
terns between embedding models: KaLM per-
formed best with sum aggregation, while Stella
showed superior results with weighted aggregation.
A more in-depth analysis is presented in Appendix
A.3.1.

3.1.3 Threshold Optimization
Our previous experiments tried to find the most
optimal thresholds separately for narratives and
subnarratives, exploring values up to 0.6. These
thresholds determine the minimum probability for
a narrative or subnarrative to be considered active
in the predictions.

We later found out that the weighted aggregation
strategy benefits significantly from increasing this
threshold range up to 0.9, with the most noticeable
improvement for Stella Embeddings. Detailed re-
sults and analysis can be found in Appendix A.3.2.

3.2 Continual Learning Performance
Table 3 shows the results between several language
sequences and embedding combination strategies
using the Concat hierarchical variant.

Impact of Aggregation Strategy At first glance,
we see that the combination strategy is sensitive to
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Order Sum Avg W. Avg

RU→BG→PT→HI→EN 0.378 0.351 0.316
RU→BG→HI→PT→EN 0.356 0.323 0.341
BG→RU→PT→HI→EN 0.314 0.343 0.316
HI→PT→RU→BG→EN 0.302 0.312 0.330
PT→HI→RU→BG→EN 0.300 0.289 0.352

Ensemble of All Orders 0.350 0.349 0.357

Table 3: Impact of language ordering on Fine-F1 scores
across different embedding combination strategies using
Stella embeddings and 0.6 thresholds.

the language order:

• Sum strategy shows drastic response to the
language ordering, with Fine-F1 scores rang-
ing from 0.300 to 0.378.

• Mean strategy shows similar-to-moderate sen-
sitivity, with Fine-F1 scores ranging from
0.289 to 0.351.

• Weighted average demonstrates the most bal-
anced performance across orders, with Fine-
F1 scores ranging from 0.316 to 0.357.

Specifically the weighted average strategy per-
forms consistently better across different orders. In
contrast to other strategies, it focuses on certain
sections which might help the classification task,
making thus the order less significant. However,
when evaluating the effectiveness of a language or-
der, we should primarily focus on the Sum and Avg
strategies (which do not introduce any weighting).
Both of these strategies agree that the first order
produces the best results.

Impact of Language Order When evaluating
for English data, the sequence that starts with Rus-
sian followed by Bulgarian outperforms every other
sequence. Even swapping between these languages
shows a performance drop. This suggests that when
training the model with sequential data, starting
with certain languages helps it build strong foun-
dation patterns, strongly influencing final perfor-
mance. In Appendix A.3.3 we do an in-depth order
significance analysis.

Impact of Embedding Choice Interestingly,
while KaLM embeddings outperformed Stella in
our stand-alone experiments (Section 2), we ob-
served different behavior in continual learning,
with KaLM model under performing. This might
suggest that Stella embeddings might be more ap-
propriate in a knowledge transfer setup.

3.2.1 Threshold Optimization for Continual
Learning

While we are at it, we extended our threshold op-
timization in Appendix A.3.2 to cover Continual
Learning.

4 Discussion

4.1 Test Set Performance

For our final submission, we created an ensemble
combining multiple models trained on different lan-
guage orders, (where better performing language
orders get more weight in the final prediction) us-
ing the Concat hierarchical variant. We positioned
each target language, as the final stage of the learn-
ing sequence, which we give more patience and a
lower learning rate.

The training configuration used Stella embed-
dings with a searching threshold of up to 0.6 and a
sum aggregation strategy for section embeddings.

The results for our initial submission for the test
set are presented in Table 4.

Lang Rank C-F1 std-C F-F1 std-F

EN 16/30 0.409 0.314 0.239 0.243
PT 4/14 0.478 0.201 0.309 0.153
RU 6/15 0.596 0.257 0.333 0.234
BG 7/13 0.510 0.322 0.333 0.300
HI 6/14 0.384 0.418 0.282 0.402

Table 4: Version 1 of the leaderboard for the test set
performance across the different languages.
C-F1: Coarse-F1, F-F1: Fine-F1, std-C/F: Standard
deviation for coarse/fine metrics.

An important aspect of our results is stability.
The proportion of F1 score and std is lower in com-
parison to teams near our entry. This shows a sign
that our model is able to generalize and learn robust
features. In comparison however to top teams, it’s
architecture might not be sufficient to capture more
complex ones.

We conducted a brief post-competition analysis
applying a higher threshold (0.9), which led to im-
proved performance, particularly for English that
is interesting to observe. Details and a comparison
table are provided in Appendix A.3.4.

Limitations

Our approach used powerful pre-trained embed-
dings and a clear limitation is that we did not per-
form any fine-tuning on pre-trained models, some-
thing that was time and resource consuming for this
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research. Top-performing teams likely used larger
language models which offer greater performance
but at higher computational costs. Our method pro-
vides some advantages in computational efficiency
but the performance gap is evident. A promising
direction would be to explore how incorporating
larger models while maintaining our framework
would respond to this new architecture.
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A Appendix

A.1 Dataset Analysis
Figure 4 shows the complete distribution of do-
mains across languages. As shown, Russian arti-
cles focus exclusively on the Ukraine-Russia War
domain, while other languages show more balanced
distribution between domains.

Figure 4: Distribution of domain across the five lan-
guages in the training set.

Figure 5: Distribution of articles across the five lan-
guages in the training dataset.

A.2 Loss Function Details
We penalize inconsistencies in the hierarchy and
label miss-classifications. More specifically, the
loss consists of:

Ltotal = (1−Wsub)·Lnarr+Wsub·Lsub+Wcond·Lcond
(4)

Lnarr represents the weighted BCE loss for narra-
tive predictions, while Lsub captures the weighted
BCE loss for subnarrative predictions. The term
Lcond serves as a conditioning term that enforces
hierarchical relationships.

The conditioning term enforces the hierarchical
structure through:

Lcond = mean(|psub·(1−pnarr)|+pnarr·|psub−ysub|)
(5)

The first part (|psub · (1− pnarr)|) penalizes the
model for predicting subnarratives when their par-
ent narrative is inactive. The remaining part ensures
subnarrative predictions match ground truth when
their parent narrative is active.

A.3 Experimental Analysis

A.3.1 Model Evaluation Across Embedding
Types and Architectures

Tables 5 and 6 present Fine-F1 scores (our pri-
mary goal is to improve subnarrative classification,
we limit this analysis to solely Fine-F1 scores for
simplicity) across model variants and aggregation
strategies per embedding model.

Model Sum Mean Weighted

Simple 0.329 ± 0.03 0.285 ± 0.01 0.325 ± 0.02
Concat 0.333 ± 0.02 0.305 ± 0.01 0.300 ± 0.02
Mult 0.311 ± 0.02 0.287 ± 0.02 0.283 ± 0.01

Table 5: Fine-F1 scores for KaLM embeddings across
model variants and aggregation strategies.

Model Sum Mean Weighted

Simple 0.309 ± 0.01 0.259 ± 0.01 0.343 ± 0.01
Concat 0.298 ± 0.02 0.256 ± 0.02 0.338 ± 0.02
Mult 0.260 ± 0.01 0.260 ± 0.01 0.327 ± 0.01

Table 6: Fine-F1 scores for Stella embeddings across
model variants and aggregation strategies.

Sum aggregation strategy appears to perform
best across all other strategies for the KaLM Em-
beddings. This shows that KaLM benefits from
preserving all information.

On the other hand, the weighted strategy seems
to suit well with Stella, consistently outperforming
all other strategies.

A.3.2 Extended Threshold Analysis
Optimizing Classification Thresholds Table 7
presents results for model variants, weighted aggre-
gation strategy and Stella embeddings after explor-
ing for higher thresholds, up to 0.9.

The weighted aggregation strategy benefits from
higher thresholds likely because it prioritizes cer-
tain sections based on length. Higher thresholds
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Model C-F1 F-F1 F-std

Simple 0.538 ± 0.021 0.426 ± 0.010 0.375 ± 0.008
Concat 0.554 ± 0.025 0.442 ± 0.019 0.375 ± 0.016
Mult 0.556 ± 0.014 0.426 ± 0.017 0.362 ± 0.011

Table 7: Performance metrics for Stella embeddings
with weighted aggregation with 0.9 threshold.
C-F1: Coarse-F1, F-F1: Fine-F1, F-std: Fine-std

help filter out noise in these weighted sections, re-
quiring greater confidence for predictions. This
leads to fewer but more precise positive classifica-
tions.

In contrast, other aggregation strategies com-
bined with different embedding models tend to pro-
duce higher variance in their results.

Threshold Optimization in Continual Learning
Following our discovery that weighted aggregation
benefits from higher thresholds, we applied this
approach to our continual learning training method.
Table 8 presents these results.

Language Order (Thresh) C-F1 F-F1 F-std

RU→BG→PT→HI→EN (0.75/0.50) 0.614 0.449 0.349
RU→BG→HI→PT→EN (0.75/0.55) 0.608 0.437 0.352
RU→HI→PT→BG→EN (0.80/0.60) 0.600 0.444 0.359
BG→RU→PT→HI→EN (0.70/0.55) 0.575 0.404 0.364
PT→HI→RU→BG→EN (0.75/0.60) 0.586 0.424 0.359
HI→PT→RU→BG→EN (0.70/0.50) 0.561 0.376 0.371

Ensemble (0.75/0.60) 0.570 0.424 0.362

Table 8: Performance of continual learning models, 0.9
thresholds, using Stella embeddings with weighted ag-
gregation.
C-F1: Coarse-F1, F-F1: Fine-F1, F-std: Fine-std

Again, higher thresholds benefit the continual
learning approach in all language orders. The op-
timized thresholds vary slightly between different
language sequences (ranging from 0.70-0.80 for
narratives and 0.50-0.60 for subnarratives), sug-
gesting that language-specific patterns influence
the optimal decision boundary.

A.3.3 Statistical Analysis of Language Order
Effects

For testing the significance of language order, we
performed 25 independent experiments (5 random
data batches per language × 5 random seeds per
order) to ensure stability and performed statistical
significance for the theoretically best order, against
the other variants.

Order Fine Coarse p-value

RU→BG→PT→HI→EN .350 ± .017 .513 ± .013 6.89 × 10−5

RU→BG→HI→PT→EN .323 ± .022 .485 ± .020 .601
HI→PT→RU→BG→EN .312 ± .005 .479 ± .007 .025
RU→HI→PT→BG→EN .210 ± .016 .369 ± .027 1.45 × 10−23

PT→HI→RU→BG→EN .289 ± .011 .476 ± .011 1.17 × 10−7

Table 9: Impact of language order on model perfor-
mance across different article batches and random seeds
for sum aggregation strategy.

Effects with Sum Aggregation Strategy The in-
theory best sequence (RU→BG→PT→HI→EN)
achieved the highest score for the Fine F1 score.
The variant that starts with Bulgarian and follows
Russian, led to a slight decrease in performance.

Our hypothesized worst language order
(RU→HI→PT→BG→EN) gave poor perfor-
mance, with a very small p-value (1.17e-07),
meaning it’s very unlikely this poor performance
occurred by chance.

Overall, the results show that when trying to
create a model for English data, having certain
languages early on in the sequence tends to help
the model perform better.

Effects with Weighted Aggregation Strategy
While we are at it, we also did a thorough anal-
ysis for the weighted strategy, which outperformed
the sum strategy.

Order Fine Coarse p-value

RU→BG→PT→HI→EN .423 ± .006 .583 ± .020 .068
BG→RU→PT→HI→EN .355 ± 0.034 .501 ± .015 1.10 × 10−9

HI→PT→RU→BG→EN .398 ± 0.014 .571 ± .021 9.17 × 10−6

RU→HI→PT→BG→EN .440 ± .013 .611 ± .018 3.09 × 10−6

PT→HI→RU→BG→EN .405 ± 0.014 .576 ± .015 .0029

Table 10: Impact of language order using weighted aver-
age strategy across different article batches and random
seeds.

Weighted strategy revealed different patterns
compared to sum.

Both RU→BG→PT→HI→EN and
RU→BG→HI→PT→EN orders maintain
strong performance, their difference is not statis-
tically significant (p = 0.068). Language order
RU→HI→PT→BG→EN performs surprisingly
well, better than our best order for sum strategy
and contrasting with its poor performance under
the same approach.

Impact of Aggregation Strategy on Language
Order Sensitivity The weighted strategy appears
to be more robust to order variations, showing gen-
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erally higher performance across all orderings com-
pared to sum strategy. This shows that embedding
aggregation affects the importance of language or-
der. Sum aggregation preserves all article infor-
mation equally, making language order clear and
much more significant. Weighted average weights
sections by their length, it shows more balanced
performance across different orders, making lan-
guage order less significant to performance.

A.3.4 Post-competition Analysis
In our post-competition analysis, we applied our
findings about weighted aggregation with higher
thresholds (0.9) to the test set. This post-analysis
showed a positive sign in our results, particularly
for English (Table 11).

Lang Rank C-F1 std-C F-F1 std-F

EN 5/27 0.556 0.396 0.362 0.370
PT 3/14 0.539 0.214 0.329 0.171
RU 5/15 0.571 0.344 0.400 0.283
BG 5/13 0.523 0.371 0.357 0.349
HI 5/14 0.453 0.441 0.341 0.456

Table 11: Version 2 leaderboard results for test set per-
formance across languages.
C-F1: Coarse-F1, F-F1: Fine-F1, std-C/F: Standard de-
viation for coarse/fine metrics.

Tables 12 and 13 compare performance using
the weighted aggregation strategy with different
thresholds (0.6 vs 0.9).

Language F1 samples F1 std samples

EN 0.287 0.296
PT 0.329 0.171
HI 0.340 0.434
BG 0.355 0.311
RU 0.398 0.292

Table 12: Post submission comparison of test set perfor-
mance using threshold 0.6 with weighted strategy and
Stella Embeddings.

Language F1 samples F1 std samples

EN 0.362 0.370
PT 0.326 0.208
HI 0.341 0.450
BG 0.357 0.349
RU 0.400 0.283

Table 13: Post submission comparison of test set perfor-
mance using threshold 0.9 with weighted strategy and
Stella Embeddings.

The results show improvements in all languages

when using the weighted strategy. The increased
range of threshold values up to 0.9 proved signifi-
cant for the English dataset. However, for the rest
of the languages, having an increased threshold did
not seem to contribute to better performance, with
some languages even experiencing higher variance.

908


