Trans-Sent at SemEval-2025 Task 11: Text-based Multi-label Emotion Detection using Pre-Trained BERT Transformer Models

Zafar Sarif, Md Akhtar, Dr. Abhishek Das, Dipankar Das


Abstract
We have introduced Trans-Sent, a Transformer-based model designed for multi-label emotion classification in SemEval-2025 Task 11. The model predicts perceived emotions such as joy, sadness, anger, fear, surprise, and disgust from text across seven languages, including Amharic, German, English, Hindi, Marathi, Russian, and Romanian. To handle data imbalance, the system incorporates preprocessing techniques, SMOTE oversampling, and feature engineering to enhance classification accuracy. The model was trained using the BRIGHTER and EthioEmo datasets, which contain diverse textual sources, such as social media, news, literature, and personal narratives. Traditional machine learning models, including Logistic Regression and Decision Trees, were tested but proved inadequate for multi-label classification due to their limited ability to capture contextual and semantic meaning. Fine-tuned BERT models demonstrated superior performance, with Russian achieving the highest ranking (9th overall), while languages with complex grammar, such as German and Amharic, performed lower. Future enhancements may include advanced data augmentation, cross-lingual learning, and multimodal emotion analysis to improve classification across different languages. Trans-Sent contributes to NLP by advancing multi-label emotion detection, particularly in underrepresented languages.
Anthology ID:
2025.semeval-1.121
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
893–898
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.121/
DOI:
Bibkey:
Cite (ACL):
Zafar Sarif, Md Akhtar, Dr. Abhishek Das, and Dipankar Das. 2025. Trans-Sent at SemEval-2025 Task 11: Text-based Multi-label Emotion Detection using Pre-Trained BERT Transformer Models. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 893–898, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
Trans-Sent at SemEval-2025 Task 11: Text-based Multi-label Emotion Detection using Pre-Trained BERT Transformer Models (Sarif et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.121.pdf