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Abstract

This article presents the systems used by Team
UBD in Task 11 of SemEval-2025. We par-
ticipated in all three sub-tasks, namely Emo-
tion Detection, Emotion Intensity Estimation
and Cross-Lingual Emotion Detection. In our
solutions we make use of publicly available
Language Models (LMs) already fine-tuned for
the Emotion Detection task, as well as open-
sourced models for Neural Machine Transla-
tion (NMT). We robustly adapt the existing
LMs to the new data distribution, balance the
importance of all emotions and classes and also
use a custom sampling scheme. We present
fine-grained results in all sub-tasks and ana-
lyze multiple possible sources for errors for the
Cross-Lingual Emotion Detection sub-task.

1 Introduction

In this project, we address the three sub-tasks
(tracks) of Emotion Detection (ED), Emotion
Intensity Estimation (EIE), and Cross-Lingual
Emotion Detection (CL-ED) from SemEval-2025
Task11 (Muhammad et al., 2025b). While the or-
ganizers provided a dataset with samples from 28
different languages (Muhammad et al., 2025a), we
only focused on English, German and Spanish for
the first two sub-tasks and Romanian, Portuguese,
Ukrainian, Russian, Hindi and Indonesian in the
last one.

Our solutions mainly rely on language-specific
encoders that have already been fine-tuned for the
emotion detection task and robustly adapt them
to the new data distribution. To bridge the gap
between languages in the last task we use an open-
source NMT system to translate the test sets of
other languages, and also experiment with cross-
lingual LMs (XLMs).

We find that the emotion-specific performance
of our systems correlates well with the frequency
of positive examples in the first two sub-tasks. This
indicates that data scarcity can still be a problem,

Figure 1: The ratio of positive labels in the train set of
the three languages addressed in the ED sub-task.

even when it is addressed through common means.
For the CL-ED sub-task we find multiple factors
that lead to degraded performance on new lan-
guages, some of which are system-specific, while
others are common to both of them. Notably, the
relatedness of languages does not correlate well
with cross-lingual performance in our experiments.

The implementation of our solutions will be pub-
lished on github1.

2 Background

Related Work The task of Emotion Detection
has found diverse applications (del Arco et al.,
2024), such as analyzing social interactions, mon-
itoring mental well-being (Chiruzzo et al., 2024;
Paduraru and Anghelina, 2024), highlighting men-
tal health concerns or understanding people’s emo-
tions during stressful events (Sosea et al., 2022).
While earlier works have tried to use a mix of
low-level features and more abstract ones, ob-
tained from Deep Neural Networks (Khanpour
and Caragea, 2018), the Transformers architecture
(Vaswani et al., 2017) has become the default ar-
chitecture for this task (Acheampong et al., 2021)
in recent years, with people using even specialized

1https://github.com/PaduraruCristian/MachineTranslation
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pre-training objectives (Sosea and Caragea, 2021)
to improve results in this downstream task.

For the Cross-Lingual variant of the task, mul-
tiple solutions have been proposed. Some notable
ones are: using multilingual encoders and training
detectors on language agnostic representations of
the texts (Alejo et al., 2020; Zhang et al., 2024;
Hassan et al., 2022), distilling monolingual detec-
tors into cross-lingual models (Wang et al., 2024),
translating texts into a language where annotated
training data is available (Alejo et al., 2020; Has-
san et al., 2022) and even using Large Language
Models as zero-shot detectors (Kadiyala, 2024).

Dataset We work on the dataset provided by
Muhammad et al. (2025a), which contains texts
from 28 different languages, annotated with the
6 emotions from Ekman’s model (Ekman and
Friesen, 1981).

3 System Overview

In our solutions we use language-specific encoders,
based on the Transformer (Vaswani et al., 2017)
architecture, that have already been fine-tuned for
the emotion detection task, in order to extract deep
representations of the textual samples. We then
add a linear classification layer to the encoders and
train them with dynamic weights to balance the
importance of each class and emotion.

3.1 Track A: ED

Linear Probing By keeping the encoders frozen
we can individually train the classifiers for each
emotion, as their optimization is completely in-
dependent from one another. To address the im-
balance between positive and negative classes we
computed the individual loss of each sample, av-
eraged the losses of samples from the same class,
and finally averaged the losses for the positive and
negative classes. After training a linear classifier
we also adjust its detection thresholds by iterating
through a range of values and selecting the one that
leads to the highest dev set F1 score.

Fine-tuning In order to robustly fine-tune the
encoders, we follow Kumar et al. (2022) and ini-
tialize the linear classification layer with the one
previously trained on the frozen encoder embed-
dings. We then jointly update both this layer and
the encoder’s parameters, balancing the classes in
the same manner as before. As the detectors for all
emotions are simultaneously trained in this case,

we further balance the importance of each one by
averaging the emotion specific losses.

Besides this balancing, we also implemented a
custom sampling scheme to make it unlikely for a
batch to have no positive examples for an emotion.
At each step, we uniformly select a random emo-
tion and label and then retrieve a sample from the
dataset with the selected label on that emotion.

The fine-tuning process does not ensure that the
classification layers are optimal for each emotion
with respect to the current encoder parameters. We
thus decided to keep the fine-tuned encoder and
remake the classification layers for each emotion
individually, with the same procedure previously
presented. We provide in the Appendix (Tab. 5) the
F1 scores on the dev set for the fine-tuned detectors
and the second linear probes for comparison.

3.2 Track B: EIE

As the intensity levels for the emotions were dis-
crete, we modeled this sub-task as a multi-label
classification problem. We trained linear probes
on text embeddings from the same encoders used
in Track A (the frozen ones and their fine-tuned
variants) with the class-balanced loss described in
Sec. 3.1.

3.3 Track C: CL-ED

For this sub-task, we chose to translate the test sets
of multiple languages into Spanish, using an NMT
system from the NLLB (NLLB et al., 2022) family
of LMs. We then use a classifier trained in Task A
for Spanish in order to detect the emotions in these
translated texts.

In the development period of the task we have
also experimented with classifiers based on cross-
lingual LMs. The classifiers were trained using
only texts written in the three languages addressed
in Track A, and then applied on texts from other
languages of this sub-task.

4 Experimental Setup

In all sub-tasks we use only the data provided
by the task organizers, without applying data
augmentations or any pre-processing before
tokenizing the texts. We used the data splits
provided by the organizers (train/dev/test), with
a single exception in the experiments based on
cross-lingual models, where 15% of the train data
is used for validation and the dev split is used
for testing. All classifiers were trained using the
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Language
Emotion Macro

F1anger fear joy sadness surprise disgust
English 48.08 77.26 68.97 68.69 62.35 - 65.07
German 63.79 32.63 63.59 52.54 19.18 64.96 49.44
Spanish 74.15 75.00 74.87 76.36 70.8 79.36 75.09

Table 1: Test set F1 scores in Track A of the linear probes trained on frozen embeddings.

Language
Emotion Macro

F1

Official
Rankinganger fear joy sadness surprise disgust

English 55.51 79.82 68.97* 68.69* 67.06 - 68.01 58/74
German 73.62 37.31 67.47 52.54* 29.76 64.96* 54.27 32/44
Spanish 75.09 75.00* 74.87* 78.74 72.16 81.28 76.19 25/44

Table 2: Test set F1 scores in Track A, mixed between the linear probes trained on embeddings from the frozen
encoders (marked with *) and those on embeddings from the fine-tuned encoders. These are the results of our final
submission in Track A.

AdamW (Loshchilov and Hutter, 2019) optimizer
implemented in Pytorch (Ansel et al., 2024) and
the pre-trained encoders were downloaded from
HuggingFace2. The following encoders were used
in Tracks A&B for each language:
English: SamLowe/roberta-base-go_emotions3

German: visegradmedia-emotion/
Emotion_RoBERTa_german6_v74

Spanish: pysentimiento/robertuito-emotion-
analysis5 (del Arco et al., 2020; Pérez et al., 2021;
Pérez et al., 2022)

4.1 Track A

Linear Probing We used the hidden state of the
CLS token from the last transformer block as the
sequence representation, ignoring the pooler layer
if the encoder happened to have one. The linear
probes were trained for 50 epochs with the binary
cross entropy loss, a learning rate and weight decay
of 1e-3, a batch size of 512, and a cosine annealing
learning rate schedule with a minimum learning
rate of 1e-5. The linear probes are trained individu-
ally for each emotion with three different random
seeds and the final weights are selected based on
the dev set F1 score. The detection threshold on
the logits is adapted for each emotion by iterating
through values in the [-2, 2] interval with a step of

2https://huggingface.co/
3https://huggingface.co/SamLowe/roberta-base-

go_emotions
4https://huggingface.co/visegradmedia-

emotion/Emotion_RoBERTa_german6_v7
5https://huggingface.co/pysentimiento/robertuito-

emotion-analysis

0.1, computing the F1 score on the dev set at each
threshold, and selecting the best one.

Fine-tuning Due to the low number of examples
we only adjust the parameters of the last two trans-
former blocks and the final classification layer. The
weights are tuned with the binary cross entropy
loss, a learning rate of 1e-5, weight decay of 1e-2,
and batch size of 256. To ensure the stability of
training, we also clipped the gradients to a maxi-
mum global value of 3. The weights are trained for
up to 500 steps and evaluated on the dev set every
25 steps (due to the uniform sampling the concept
of epoch is no longer well-defined).

4.2 Track B

In this sub-task we trained a linear classifier for
each emotion with the cross-entropy loss and the
same hyper-parameters from Track A’s Linear Prob-
ing setup. Due to the lower number of samples for
higher intensity levels, we increased the batch size
to 1024 and the number of epochs to 150, to make
up for the reduced number of steps per epoch.

4.3 Track C

We translated the texts into Spanish using the dis-
tilled NLLB-1.3B (NLLB et al., 2022) model, al-
ways producing up to 200 tokens. English could
not be used as a target language for translation be-
cause it lacks a classifier for the disgust emotion,
while for German the results in Track A were worse
compared to the other two languages. We didn’t
apply any post-translation processing on the texts
to ensure that the LM did not start hallucinating or
went in a loop, repeating the same token at output.
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Language Fine-tuned
Encoder

Emotion
Avg Official

Rankinganger fear joy sadness surprise disgust

English
✘ 0.452 0.616 0.654 0.612 0.454 - 0.558 -
✓ 0.584 0.648 0.692 0.556 0.585 - 0.613 -

German
✘ 0.427 0.127 0.559 0.512 0.166 0.480 0.378 -
✓ 0.592 0.339 0.648 0.516 0.314 0.527 0.489 19/24

Spanish
✘ 0.649 0.714 0.649 0.697 0.649 0.691 0.675 -
✓ 0.679 0.721 0.706 0.745 0.672 0.712 0.706 13/26

Table 3: Pearson Correlation on the test set of Track B (maximum value is 1). The final submission contained the
predictions made with fine-tuned encoders only for the German and Spanish languages (gray background).

Target
Language

Emotion Macro
F1

Official
Rankinganger fear joy sadness surprise disgust

Spanish 75.09 75.00 74.87 78.74 72.16 81.28 76.19 -
Romanian 40.74 72.27 78.93 34.29 27.83 51.15 50.87 11/13

Portuguese (ptbr) 60.99 35.38 52.94 45.67 35.53 12.59 40.52 9/11
Ukrainian 26.46 54.55 41.99 51.11 37.41 20.22 38.63 10/15
Russian 54.07 66.67 49.93 46.51 54.98 48.08 53.37 11/14
Hindi 60.92 62.86 57.28 62.54 69.46 47.51 60.09 10/14

Indonesian 29.06 27.42 69.61 40.69 34.34 45.05 41.03 11/15

Table 4: Test set F1 scores in Track C, obtained by the linear probes trained on fine-tuned embedding for Spanish
texts in Track A. The results from Track A on Spanish are also added for comparison. The results on the other six
languages correspond to our final submission in Track C.

For the experiments with cross-lingual LMs we
have performed linear probing on embeddings ex-
tracted with the LEALLA-large (Mao and Naka-
gawa, 2023) and QWEN2.5-7B (Yang et al., 2025)
models and also fine-tuned the LEALLA model.
The complete setup is detailed in Appx. A.

5 Results

Track A The results of the linear probes on the
test set of the competition are presented in Table 1.
We observe that the detectors trained on Spanish
texts are the only ones to consistently perform well
on all emotions. For texts written in German, the
detectors for fear and surprise lack in performance
when compared to the detectors for other emotions.
In the case of English texts, the detector for anger
is the only one that is well below the average per-
formance level, while fear is highly above it. This
pattern is correlated with the frequency of posi-
tive labels in the provided train sets (see Fig. 1)
for English and German. For detectors trained on
Spanish texts however, we notice that this correla-
tion does not hold anymore. The correlations on
English and German data are still maintained even
after fine-tuning (see Table 2). We also notice that
each emotion attains different levels of improve-

ments in the second linear probing (Table 5 in the
Appendix), but this is not correlated with the initial
performance of the fine-tuned detectors.

The frequency of positive samples alone is not a
good indicator for the final performance. While joy
and sadness have similar frequencies in German
data, there is a 10% gap in F1 score between them
in the linear probing scenario (Table 1). Also, the
disgust label has similar frequency in German and
Spanish data, but the difference in F1 score is close
to 15%. We believe that this is where the inherent
task difficulty and quality of the encoders used are
most likely to make the difference.

For certain emotions, the initial linear probes
performed better than those trained on the fine-
tuned encoders. Thus, we decided to select for
each emotion the test set predictions from the linear
probe that had the highest F1 score on the dev set.
The results of this final submission are presented
in detail in Table 2.

Track B The test set results for the previously de-
scribed experiments in this sub-task are presented
in Table 3. Using the fine-tuned encoder resulted
in increased performance in almost every case (the
only exception is the sadness label for the English
data). The largest improvements are in the German
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Figure 2: t-SNE visualizations of language specific embeddings extracted with LEALLA-large pre-trained (left), 4
blocks fine-tuned (middle left), 8 blocks fine-tuned (middle right) and QWEN2.5-7B (right) from the train set of
Track A for English, German and Spanish, and from the dev set of Track C for Romanian, Ukrainian and Hindi.

data, which also had the worst performance with-
out fine-tuning. The improvement on each emotion
is also not uniform - the highest gains are on the
emotions that initially had the lowest scores. We
consider this to be thanks to the balancing of emo-
tions from the previous sub-task, which helped the
encoder attend more to the ones with higher loss,
but without disregarding the others, so that their
performance did not degrade through fine-tuning.
The results of the final submission are marked in
Table 3 with a gray background.

Track C The results of our system for this Track
are presented in Table 4, along with the results
for Spanish from Track A, only for comparison.
While a decrease in overall performance (Macro
F1) was expected, we note that this decrease is not
uniform across the individual emotions and lan-
guages. Certain detectors transfer well only to a
single language, losing less than 5% in terms of F1,
but most of the times the decrease is well above
10%. Surprisingly, the detector for joy achieved
better performance on texts translated from Ro-
manian than on the texts from Track A, originally
written in Spanish. We also noticed that the drop
in performance is not necessarily correlated with
the similarity of Spanish and the target languages.
For example, the performance on Hindi texts is
the highest on average, surpassing the Romance
languages considered (Romanian and Portuguese).

In the described framework we have identified
multiple sources of errors. The first one is the qual-
ity of the translations - we validated that in certain
cases the NMT system started repeating a single
token multiple times. Nonetheless, as almost all
languages have at least one emotion with an F1

higher than 60% (Ukrainian is the sole exception),
we expect this type of errors to be limited. Another
possibility is for low-level cues for the perceived
emotions (e.g. punctuation) to be lost in the pro-
cess or for the choice of words to be unusual due
to translationese (Rabinovich et al., 2017). We ex-

pect these problems to be correlated to the data
distribution used for training the NMT model.

A general source of errors is the distributional
shift between languages, regarding the topics they
covered. We manually determined that texts in Ro-
manian seemed to be mainly scraped from news
websites and covered topics like politics and the re-
cent COVID-19 pandemic, whereas the texts in En-
glish contained mostly short texts that were likely
written on social media websites. These particu-
larities might bias the detectors towards detecting
certain topics, not the emotions themselves, result-
ing in degraded performance in other contexts.

Through our experiments in the dev period with
Cross-Lingual models we have noticed that they
also suffer a great performance degradation on new
languages (consult Appx. A for the results). We
provide in Fig. 2 a t-SNE visualization of text em-
beddings extracted with the LEALLA-large and
QWEN2.5-7B models. We observed that the data
tends to form language-specific clusters, which we
assume to be the main reason for the poor general-
ization of the trained detectors to new languages.
This embeddings space structure can be caused
both by the topic changes between languages, and
the language specificity of the embeddings.

In order to quantify the impact of the two fac-
tors mentioned above one would require high qual-
ity translations pairs, as well as topic annotated
samples. We leave this detailed study as future
work and only investigate in Appendix A the text
pairs translated with the NLLB model in Track
C. While no clear conclusion can be reached, we
reason based on the observed evidence that severe
translations errors are surely present.

6 Conclusions

In this work we have presented our systems and re-
sults for the three tracks of Task 11 from SemEval-
2025. For the ED task we observed that properly
balancing the classes and emotions in the fine-
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tuning of LMs leads to consistent performance
improvements. In the EIE one we have shown
that fine-tuning with the simple detection objective
from before can greatly increase performance in
this task, especially for the under-performing emo-
tions. Lastly, in the CL-ED task we have tested two
types of systems, one relying on NMT and one on
cross-lingual LMs. We presented the specific and
common issues of both system types, proposing fu-
ture research directions for quantifying the impact
of these error sources.
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A Cross-Lingual Models

t-SNE visualization Regarding the t-SNE plots
from Figure 2, we want to highlight that the tanh
activation of the pooler layer in the LEALLA-large
model is likely the main reasons why all the em-
beddings are clumped together more tightly than
the embeddings of the QWEN model.

Setup In our experiments with cross-lingual LMs
from the development period, we used the output
of the pooler layer for the LEALLA encoder as
sequence representation, while for the QWEN LM
we used the last hidden state of the last token. The
QWEN embeddings were extracted from a 4-bit
quantized version of the model, using the Unsloth6

library, and L2 normalized. The linear classifiers
were trained with the same methodology and hyper-
parameters as before, but without further adjusting
the detection thresholds.

LEALLA encoder The results of the linear
probes trained on embeddings from the LEALLA-
large model are presented in Table 6. We also fine-
tuned the LEALLA encoder on all 3 languages ad-
dressed in Track A, following the recipe presented
in the main article (see Table 7 for the results).
The performance degradation on new languages
is higher than 10% in most of the cases. Another
observation is that training the linear probes only
on embeddings from Spanish texts leads to better
cross-lingual performance on Ukrainian and Hindi
than training on all 3 languages from Track A.

We also observe that the cross-lingual perfor-
mance improvements from fine-tuning are not uni-
form across the new languages. For Romanian the
macro F1 score either improves by less than 1%,
or decreases by almost 2%, while on Ukrainian we
observe and improvement of 5-7% and 13-15% for
Hindi.

QWEN embeddings The results of the linear
probes trained on QWEN embeddings are pre-
sented listed in Table 8. We also trained logis-
tic regression models using the implementation in

6https://docs.unsloth.ai/

sklearn (Pedregosa et al., 2011) with the lbfgs and
linear solvers. The results of these models (see
Table 8) were actually worse than the results with
LEALLA embeddings. We initially assumed that
overfitting was the most likely cause, as the dimen-
sionality of the embeddings was 14 times larger.
To address this, we used PCA to reduce the di-
mensionality of the embeddings and then retrained
the linear classifiers with the Pytorch implemen-
tation. We present in Table 9 the results with in-
creasing number of principal components. As the
validation Macro F1 score keeps increasing with
the number of components we conclude that the
dimensionality reduction actually removes useful
information from the embeddings. We also note
that for Ukrainian and Hindi the best results are
obtained with fewer components, not with the orig-
inal embeddings, meaning that the dimensionality
reduction also removed some information that was
damaging for cross-lingual transferability.

Similarity of translated text pairs We provide
in Figure 3 a set of t-SNE plots for LEALLA-large
embeddings of the test set from Track C for the 6
addressed languages, both in its initial form and
the version translated into Spanish with the NLLB
model. We observe that the translated variants are
more spread out than the originals, but they remain
centered in the same region as the initial embed-
dings.

In Figure 4 we present histograms for the cosine
similarity of original and translated text pairs, en-
coded with the pre-trained LEALLA model. The
low cosine values can indicate both translation er-
rors and language specificity of embeddings. While
it is not clear based on these figures what the main
source of errors is in the cross-lingual setting of ED,
we believe that very low cosine values (less than
0.2) are most likely caused by severe translation
errors. We assumed this based on the tendency of
deep networks to restrict their outputs to a narrow
cone (Liang et al., 2022). Thus, embeddings that
largely deviate from this cone are most likely ex-
tract from nonsensical inputs, which are outside the
distribution of texts used for training the encoder.

As for the generally poor performance of the
models trained from this encoder (including the in-
ditribution setting), we assume that this is caused
by the data used for pre-training, which may not
contain emotion-showcasing samples. The pre-
training objective itself is more oriented towards
matching information, not emotions, thus the em-
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Language Classifier
Emotion Macro

F1anger fear joy sadness surprise disgust

English
Fine-tuned 68.75 79.03 73.33 76.32 71.88 - 73.86

Fine-tune + LP 72.73 80.6 73.68 80.56 73.68 - 76.25

German
Fine-tune 79.7 42.11 67.39 61.11 36.84 66.17 58.89

Fine-tune + LP 80.0 50.00 74.36 62.96 40.74 68.96 62.84

Spanish
Fine-tune 72.73 83.58 77.59 81.36 68.42 85.04 78.12

Fine-tune + LP 76.32 86.96 79.66 82.76 71.43 86.61 80.62

Table 5: Dev set F1 scores in track A for the fine-tuned classifiers and the second linear probes.

Source
language

Validation
macro F1

Target language
ron ukr hin

eng 53.49 41.87 18.12 27.16
deu 46.37 45.89 20.89 26.56
esp 59.23 42.89 26.50 44.43

eng, deu,
esp 52.94 46.97 23.58 32.68

Table 6: Results on the dev set of target languages for the
linear probes trained on embeddings from the LEALLA-
large model.

#Transformer
Blocks

Val.
F1

Target language
ron ukr hin

4 61.80 47.60 28.44 45.67
8 62.64 45.20 30.22 47.05

Table 7: Results of the finetuned LEALLA-large model
on the dev set of target languages, based on the number
of fine-tuned Transformer blocks.

beddings are unlikely to capture emotions-related
features. While fine-tuning can help address this is-
sues, a complete one would fair better than the par-
tial fine-tune that we have done. Even in this case,
one would have to take measures to prevent the
occurrence of catastrophic forgetting (McCloskey
and Cohen, 1989), making sure that the encoder
remains language agnostic.

B Language Families Covered

We listed in Table 10 the 9 languages addressed
in this paper and the language family that they are
part of.

Source
languages

Validation
macro F1

Target language
ron ukr hin

eng 46.01 36.69 14.53 19.35
deu 40.44 43.94 15.82 22.60
esp 55.58 44.10 16.79 21.39

eng, deu,
esp 52.03 45.21 16.67 23.46

eng* 41.04 37.26 16.85 16.78
deu* 37.85 31.48 11.69 19.08
esp* 52.66 28.81 15.52 18.90

eng, deu,
esp* 50.80 37.35 15.16 21.43

Table 8: Results on the dev set of target languages for
the linear classifiers trained on embeddings from the
QWEN2.5 model. The mark * indicates results for the
sklearn implementation of logistic regression.

#Principal
components

Val
F1

Target language
ron ukr hin

64 44.05 27.38 15.53 23.93
128 45.17 29.09 16.17 20.96
256 45.97 34.15 17.64 19.94
3584 52.03 45.21 16.67 23.46

Table 9: Results on the dev set of target languages for
the linear classifiers trained on embeddings from the
QWEN2.5 model (from all source languages) after di-
mensionality reduction with PCA.

882



Figure 3: t-SNE plot of LEALLA-large embeddings for the test set of Track C, both in the original form and their
Spanish translations done with the distilled NLLB-1.3B.

Language Family
English Indo-European; Germanic
German Indo-European; Germanic
Spanish Indo-European; Romance

Romanian Indo-European; Romance
Portuguese (ptbr) Indo-European; Romance

Ukrainian Indo-European; Balto Slavic
Russian Indo-European; Balto Slavic
Hindi Indo-European; Indo-Iranian

Indonesian Austronesian; Malayo-Polynesian

Table 10: Languages addressed in this work and the Language Families that they are part of.
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Figure 4: Cosine similarity for LEALLA-large embeddings of pairs of original and translated texts from the test set
of Track C.
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