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Abstract

Table Question Answering (TQA) involves ex-
tracting answers from structured data using
natural language queries, a challenging task
due to diverse table formats and complex rea-
soning. This work develops a TQA system
using the DataBench dataset, leveraging large
language models (LLMs) to generate Python
code in a zero-shot manner. Our approach is
highly generic, relying on a structured Chain-
of-Thought framework to improve reasoning
and data interpretation. Experimental results
demonstrate that our method achieves high ac-
curacy and efficiency, making it a flexible and
effective solution for real-world tabular ques-
tion answering. The source code for our imple-
mentation is available on GitHub 1.

1 Introduction

As tabular data becomes increasingly prevalent
across domains such as finance, healthcare, and
scientific research, there is a growing need for sys-
tems that can effectively interpret and extract infor-
mation from structured data using natural language
queries. Table Question Answering (TQA) ad-
dresses this challenge by enabling users to query ta-
bles without requiring a structured query languages
like SQL. However, TQA remains a difficult task
due to the diversity in table structures, ambiguous
question formulations, and the need for numerical
and logical reasoning.

In this paper we present a full pipeline for TQA.
We prompt large language models (LLMs) to gen-
erate executable Python code dynamically. This
method allows for flexible reasoning over tabu-
lar data without requiring task-specific training.
Additionally, we introduce a structured Chain-
of-Thought (CoT) framework that enhances the
model’s interpretability by decomposing reasoning

1https://github.com/omarmoo5/
semeval2025-task8

into explicit Hint Generation and Code Generation
steps.

To make our framework as dynamic as possible,
we performed extensive prompt tuning to adapt
to variations in table structures and data distribu-
tions. Since tabular data can change significantly
across different domains, we iteratively refined our
prompts to ensure robustness across datasets. We
also analyzed errors to identify common mistakes
and adjusted our approach accordingly. Addition-
ally, we conducted a grid search over model param-
eters to optimize performance, balancing computa-
tional efficiency and accuracy. These optimizations
allow our system to generalize effectively across
diverse TQA scenarios.

We evaluate our approach on the DataBench
dataset (Grijalba et al., 2024), a diverse benchmark
featuring real-world tables and human-generated
queries. Our results demonstrate that our method
effectively handles a wide range of question types,
including direct retrieval, numerical reasoning, and
categorical filtering, while maintaining computa-
tional efficiency.

2 Related Work

Recent advances in TQA typically rely on two
main approaches: Text-to-SQL models (Zhong
et al., 2017; Yu et al., 2019), which translate natural
language into executable queries, and end-to-end
(E2E) models (Yin et al., 2020), which directly in-
fer answers from table representations. While Text-
to-SQL excels in structured retrieval and arithmetic
reasoning, it struggles with unstructured tables and
ambiguous queries. E2E models are more flexible
but often lack precision in structured data retrieval.
Hybrid approaches (Zhang et al., 2024a) have at-
tempted to combine these strengths, but they typi-
cally require extensive pretraining and fine-tuning,
limiting their adaptability across datasets.
In parallel, recent work has explored enhancing
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these models through Chain-of-Thought (CoT) rea-
soning techniques. Building on this line of research,
the Chain-of-Table framework (Wang et al., 2024)
introduces a novel method for table-based reason-
ing by integrating structured tabular transforma-
tions into the reasoning process of Large Language
Models (LLMs). It enables dynamic table evolu-
tion, where each reasoning step applies operations
such as adding columns, selecting rows, grouping,
or sorting. These operations create intermediate
tables that serve as proxies for the model’s thought
process.

Despite these advances, existing methods often
require pretraining, fine-tuning, or introduce signifi-
cant computational overhead. To address these lim-
itations, we propose a zero-shot TQA approach that
eliminates the need for any model-specific training.
Our method leverages the Chain-of-Thought (CoT)
framework to improve interpretability and overall
system performance. The resulting approach is
lightweight and easily adaptable across different
datasets.

3 Task Overview

The main objective of the shared task (Osés Gri-
jalba et al., 2025) is to develop a system capable
of accurately answering questions based on real-
world datasets presented in tabular formats.
The dataset utilized in this task is DataBench (Gri-
jalba et al., 2024), a diverse collection of tabular
datasets presented in English. It comprises 65 ta-
bles from various domains.
Each table is accompanied by 20 human-generated
questions, resulting in a total of 1,300 questions
and answers.
The task includes two subtasks:

• Task I: DataBench QA. Answer the questions
using only the data provided in the dataset.

• Task II: DataBench Lite QA. Similar to Task
I but uses a sampled version of each dataset
(maximum of 20 rows per dataset), which is
particularly useful for evaluating models with
smaller input window sizes.

4 Approach

Our approach is primarily code-based, building
upon the baseline model (Grijalba et al., 2024).
We leverage LLMs by prompting them to gener-
ate executable Python code snippets for answering
questions over tabular data.

In our initial experiments, the LLaMA-3 model
served as the baseline, tested using a simple prompt
(Figure 5 & 6) to evaluate its raw performance. Due
to computational limitations, the model weights
were quantized to 4 bits.
The baseline analysis revealed several challenges,
detailed in the Experiments section. Specifically,
the model struggled with non-intuitive data units,
often misinterpreting values in the thousands, and
lacked awareness of column values, leading to in-
correct filtering and null outputs. To address these
issues, we introduced several improvements:

• Meta-Information Enrichment: Prompts
were enhanced by providing detailed meta-
information, including all possible categories
for categorical columns and statistical sum-
maries (mean, minimum, and maximum) for
numerical columns. This helped the model
better interpret the data.

• Chain-of-Thought (CoT) Paradigm: In-
spired by CoT reasoning, we divided the work-
flow into two distinct modules:

– Hints Generation: predicts two key as-
pects: the expected answer type and the
relevant columns needed to answer the
question.

– Code Generation: Takes the generated
hints, along with the meta-information,
and prompts the LLM to generate Python
code capable of querying the dataframe
and extracting the correct answer.

• Post-Processing Module: To further improve
robustness, we introduced a post-processing
step. If the generated code fails to execute,
an automatic retry with an additional LLM
call is triggered. This module also refines
outputs—for instance, by converting a Pandas
Series to a list to ensure type consistency with
the ground truth.

This structured, multi-step approach, illustrated in
Figure 1, significantly improved the model’s rea-
soning abilities and produced more accurate and
interpretable outputs.

Question Hints
Generation

Code
Generation

Post
Processing Answer

Figure 1: Final Approach
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5 Experiments

5.1 Experiment 1: Enhancing the Baseline
Prompt

In our initial attempts, we used the Meta-Llama-
3.1-8B-Instruct model and modified the baseline
prompt to provide more detailed information about
the dataset. Specifically: For categorical columns,
we listed all possible categories. For numerical
columns, we included key statistics such as the
mean, minimum, and maximum values. This
enhancement improved the model’s understanding
of the dataset and helped prevent errors such as
incorrect value indexing.

Example:

Question: How many billionaires are there
from the ’Technology’ category?
Part of the Generated Code:
billionaires = df[df[’finalWorth’]
>= 100000000]

However, in the dataset, 100000000 is expressed
as 100 million, leading to potential indexing mis-
takes.

5.1.1 Experiment 2: Evaluating Alternative
Models

To further improve performance, we tested other
models using the same prompt structure. Specifi-
cally, we experimented with Qwen2.5-Coder-7B-
Instruct (Hui et al., 2024), which significantly im-
proved the results.
We also attempted to use TableLLAMA (Zhang
et al., 2024b), but it performed poorly, as it fre-
quently hallucinated answers rather than retriev-
ing them directly from the dataset. Unlike other
models, TableLLAMA takes the table as input and
generates an answer without explicitly retrieving
values, making evaluation and output constraints
more challenging.

5.2 Experiment 3: Adding a Hint Module for
Answer Type Prediction

To refine the model’s responses, we introduced a
hints module (Figure 9) to enrich the input prompt.
The first hint required the model to predict the ex-
pected answer type, which was well-defined in the
competition:

• list[number]
• category

• number
• boolean
• list[category]

Then the expected type is then passed to a code
generation prompt. This adjustment helped pre-
vent errors where the model focused too much on
the logic of the question rather than retrieving the
actual answer.

Example:

Question: Is the city with the most billion-
aires in the United States?
Incorrect Answer: Pottsville

By guiding the model with an answer-type con-
straint as shown in Figure 10, we reduced such
errors.

5.3 Experiment 4: Building Upon Hints
Module

To further improve accuracy, we introduced a sec-
ond hint that predicted the relevant columns in the
data frame needed to answer each question (Figure
12). This strategy narrowed the search space, help-
ing the model focus on the most relevant data and
reducing errors.

6 Results

All experiments were conducted on a V100 GPU
(32GB memory), with all models quantized to 4
bits to fit within memory constraints.

For each experiment, we tested multiple tempera-
ture settings to assess their impact on performance.

The experiments were evaluated using the
databench eval package.

6.1 Experiment 1:

Temperature 0.4 0.5 0.6 0.7 0.8

Full Dataset 0.5290 0.5405 0.5237 0.5366 0.5054
Lite Dataset 0.5489 0.5382 0.5175 0.5428 0.5306

Table 1: Results of Experiment 1.

6.2 Experiment 2:

Temperature 0.4 0.5 0.6 0.7 0.8

Full Dataset 0.6758 0.6758 0.6651 0.6689 0.6643
Lite Dataset 0.6941 0.6865 0.6827 0.6766 0.6766

Table 2: Results of Experiment 2.
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6.3 Experiment 3:

Temperature 0.4 0.5 0.6 0.7 0.8

Full Dataset 0.7000 0.7000 0.6957 0.6888 0.6957
Lite Dataset 0.7056 0.7049 0.7000 0.6918 0.6972

Table 3: Results of Experiment 3.

6.4 Experiment 4:

Temperature Full Dataset Lite Dataset

0.1 0.7484 0.7629
0.2 0.7454 0.7691
0.3 0.7500 0.7660
0.4 0.7500 0.7637
0.5 0.7400 0.7607
0.6 0.7484 0.7610
0.8 0.7385 0.7599
0.9 0.7561 0.7614
1.0 0.7431 0.7607

Table 4: Results of Experiment 4.

7 Results and Analysis

The analysis in the table below is conducted us-
ing Experiment 4 with a temperature of 0.7 on the
dev set. The results were obtained by using the
databench eval package.

Category Full Lite

Avg Accuracy 0.75225 0.77824
Boolean 0.75954 0.79389
Number 0.77692 0.78462
Category 0.80608 0.80989
List[Category] 0.70115 0.73946
List[Number] 0.71756 0.76336

Table 5: Accuracy of Predicting Different Question
Types for Full and Lite Datasets

7.1 Results on the Full Dataset (Dev)

Overall Results

75.2%

16.7%

8%

Correct Answers

Wrong Answers

Code Errors

Correct Answers Breakdown

20.5%
21.5%

20.2%

18.6%
19.1%

number

category

boolean

list[category]

list[number]

7.2 Results on the Lite Dataset (Dev)

Overall Results

77.8%

15.3%

6.9%

Correct Answers

Wrong Answers

Code Errors

Correct Answers Breakdown

20%
20.9%

20.4%

19%
19.6%

number

category

boolean

list[category]

list[number]

7.3 Results on the Test Dataset
On the test dataset, we used larger models. We
made two submissions as follows:

Model Full Lite

Qwen2.5-Coder(14B) Q4 71.64 75.28
Qwen2.5-Coder(32B) Q4 75.67 78.73

Table 6: Accuracy on the test Dataset

7.4 Error Analysis
In this section, we present an error analysis of our
final pipeline, evaluated using the model Qwen2.5-
Coder-32B-Instruct on the training dataset with a
temperature setting of 0.7. Due to computational
constraints, we were unable to conduct a large num-
ber of experiments with this model.
There are multiple reasons that we identified for
the errors:
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7.4.1 Data cleaning issues
Some tables, such as 054_Joe and 007_Fifa, have
columns renamed with type annotations (e.g., col-
umn_name<gx:data_type>). However, the LLM
sometimes incorrectly omitted the datatype suffix
during code generation, leading to code failures.
An example from the 054_Joe table is shown below
(Figure 2).

{
"Question": "What␣are␣the␣two␣

highest␣numbers␣of␣retweets␣a␣
tweet␣in␣the␣dataset?",

"Table": "054 _Joe",
"Generated␣Code":
def answer(df):

return df[’retweets ’]. nlargest
(2).tolist (),

"Answer": "Code␣Error",
"Ground␣Truth": [205169 , 101314]

}

Figure 2: Example of Data Cleaning Error

In this case, the column should have been
referenced as retweets<gx:number> instead of
retweets, resulting in a code failure. These types
of errors require further investigation of the answer
tables and additional cleaning to remove such in-
consistencies.

7.4.2 Limitations in Handling Corner Cases
Requiring Multiple Steps of Reasoning

Some questions involved corner cases that required
multiple steps of reasoning, which the LLMs strug-
gled to handle. One such issue occurred in table
046_120, where the same athlete appeared multi-
ple times, leading to incorrect results in the top 3
weights (Figure 3).

{
"Question": "What␣are␣the␣three␣

highest␣weights␣of␣athletes?",
"Table": "046 _120",
"Generated␣Code":
def answer(df):

return df[’Weight ’]. nlargest (3).
tolist (),

"Answer": [214.0 , 214.0, 198.0] ,
"Ground␣Truth": [214.0 , 198.0,

190.0]
}

Figure 3: Example of Handling Corner Cases Errors

This problem arises because the LLM does not
account for duplicate entries of the same athlete,

resulting in multiple counts of the same weight.
This error in such questions could be mitigated
through few-shot training, which encourages the
model to consider all possible scenarios, or by
adding an additional layer for Chain of Thought
(CoT) while solving the question

7.4.3 Logic Code Errors
There also exist some logical code errors. In
the case of table 002_Titanic, the generated code
failed due to an incorrect use of the .any() function
(Figure 4).

{
"Question": "Did␣any␣children␣below␣

the␣age␣of␣18␣survive?",
"Table": "002 _Titanic",
"Generated␣Code":
def answer(df):

return (df[’Age’] < 18) & (df[’
Survived ’]).any(),

"Answer": [False , False , False ,
False , False , False , False ,
False , True , False , False , False
, False , False , False , True ,
False , False , False , False],

"Ground␣Truth": True
}

Figure 4: Example of Logic Code Error in Titanic
Dataset

The issue arises because the .any() function is
applied to the df[’Survived’] column only, rather
than evaluating the condition for each row. This
leads to an incorrect output. To reduce such errors
in the future, the model code generation capabilities
must be improved.

8 Conclusion

In this work, we explored multiple LLMs and
experimented with various prompt modifications.
Our findings indicate that enhancing prompts
with richer data context significantly improves the
model’s understanding of the dataset and its val-
ues. Additionally, decomposing the problem into
smaller tasks—such as predicting the answer type,
identifying relevant columns, and then integrating
this information to generate the final code—proved
to be more effective than attempting to generate the
code in a single step.

This structured approach helped us improve
upon baseline results by reducing errors and en-
hancing accuracy. Furthermore, systematic data
analysis and tracking model errors played a crucial
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role in identifying the model’s weaknesses, allow-
ing us to refine our approach and achieve better
performance.

Our final system achieved a score of 79.31 in the
final ranking of the full DataBench test set, ranking
24th overall and 16th among open-source mod-
els. On the DataBench Lite test set, our system
ranked 17th overall and 11th among open-source
models. Notably, these results were obtained us-
ing a quantized version of the LLM. Given these
results, we believe that running our approach on
a full-precision model could further enhance ac-
curacy by leveraging richer representations and
reducing potential quantization-related losses. This
highlights the adaptability of our framework and
its potential to achieve even stronger performance
with greater computational resources.

9 Future Work

In the future, we plan to explore the use of larger
models to further improve our results. Due to re-
source constraints, we were unable to use larger
models and instead relied on quantized versions.
We strongly believe that scaling up to larger models
would significantly enhance performance.

Additionally, adopting a more interactive ap-
proach to analyze model errors and dynamically
modify prompts could lead to better outcomes. An-
other area for exploration involves testing more
models, particularly recent ones such as DeepSeek.
Although we attempted to use this model, we en-
countered challenges related to constraining the
generated output, which required parsing effort dur-
ing the development phase. Further efforts will be
necessary to refine and optimize the use of this
model for improved results.
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10 Appendix

{
"role": "system",
"content": "You␣are␣a␣helpful␣

assistant␣and␣an␣expert␣in␣
Python␣programming."

}

Figure 5: Exp1 - System Message

0.4 0.5 0.6 0.7 0.8
0.5

0.51

0.52

0.53

0.54

0.55

Temperature

A
cc

ur
ac

y

Accuracy vs Temperature

Full Dataset
Lite Dataset

Figure 7: Experiment 1 Results
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Figure 8: Experiment 2 Results
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Figure 11: Experiment 3 Results
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Figure 13: Experiment 4 Results
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{
"role": "user",
"content": (
"** python\n"
"import␣pandas␣as␣pd\n"
"import␣numpy␣as␣np\n\n"
"def␣answer(df)␣->␣bool:\n"
"␣␣ ’**\n"
"␣␣␣The␣DataFrame␣(’df ’)␣has␣the␣following␣dtypes :\n"
f"␣␣(meta)"
"␣␣\n\n"
f"␣␣Returns:␣{question }\n"
"␣␣ ’**\n"
"␣␣␣#␣Sample␣data␣rows␣for␣insights :\n"
f"␣␣data␣=␣{data}"
"***\n"
"Return␣only␣the␣Python␣function␣implementation␣only␣as␣a␣single␣code␣block.␣Don

’t␣write␣comments␣or␣docstrings."
}

Figure 6: Exp1 - Baseline User Message

"""
You are Qwen , created by Alibaba Cloud. You are a helpful assistant.
Given a question you are requested to predict the type of answer from this list:
[list[number], category , number , boolean , list[category ]]
return only the predicted type of the answer.
"""

Figure 9: Experiment 3 Hint Generation Prompt

# Implement a Python function only as a single code block. Don’t write comments or
docstrings.

def answer(df):
’’’
Processes a DataFrame and returns the answer based on the given question and

data types.

Args:
df (pd.DataFrame): The input DataFrame with specific dtypes: {meta}.

It contains some categorical data in columns: {categorical_columns }.

Returns: {return_type}
Make sure to satisfy the following conditions:

- Boolean: Returns either True or False.
- Category: Returns a value from a cell (or a substring of a cell) in

the dataset.
- Number: Returns a numerical value from a cell in the dataset , which

may represent a computed statistic (e.g., average , maximum , minimum)
.

- List[category ]: Returns a list containing a fixed number of categories
.

- List[number ]: Returns a list containing a fixed number of numerical
values.

The function returns the result for the following question: {question }.
’’’

Figure 10: Experiment 3 Code Generation Prompt
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"""
You are a helpful assistant. Given a question you are requested to Follow this

instructions strictly:

- Predict the type of answer to be literally one of this :
[list[number], category , number , boolean , list[category ]]

* Boolean: Returns either True or False.
* Category: Returns a value from a cell (or a substring of a cell) in the

dataset.
* Number: Returns a numerical value from a cell in the dataset , which may

represent a computed statistic (e.g., average , maximum , minimum).
* List[category ]: Returns a list containing a fixed number of categories.
* List[number ]: Returns a list containing a fixed number of numerical values

.
Don’t use any other type of answer.

- Predict the relevant column names neeeded to answer the question using the
metadata of the table.

Return only a json in this format:

{
"type": <predicted type of answer >,
"columns_used ": <list of columns to be used to answer >
}

"""

Figure 12: Exp4 - More Hints Generation Prompt
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