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Abstract

Entity-aware machine translation faces signif-
icant challenges when translating culturally-
adapted named entities that require knowl-
edge beyond the source text. We present
SALT " (SQL-based Approach for LLM-
Free Entity-Aware-Translation), a parameter-
efficient system for the SemEval-2025 Task
2. Our approach combines SQL-based en-
tity retrieval with constrained neural transla-
tion via logit biasing and explicit entity anno-
tations. Despite its simplicity, it achieves state-
of-the-art performance (First Place) among ap-
proaches not using gold-standard data, while
requiring far less computation than LLM-based
methods. Our ablation studies show simple
SQL-based retrieval rivals complex neural mod-
els, and strategic model refinement outperforms
increased model complexity. SALT ™ offers an
alternative to resource-intensive LLM-based
approaches, achieving comparable results with
only a fraction of the parameters.

1 Introduction

Despite ever-progressing language model capabili-
ties, they continue to struggle with tasks requiring
precise factual knowledge and cross-cultural un-
derstanding (Wang et al., 2024; Lin et al., 2022;
Hu et al., 2024). One such challenge is named
entity translation, where direct word-for-word ap-
proaches often miss cultural nuances (Diaz-Mill6n
and Olvera-Lobo; Gaballo et al., 2012). Accu-
rate entity-aware translation is essential for pre-
serving meaning across languages. For example,
Roald Dahl’s The Witches became Hexen hexen
(“Witches bewitch™) in German — a choice no
model could infer from the source alone.

Recent advances in machine translation, partic-
ularly with large language models (LLMs), have
greatly improved translation quality (Team et al.,
2022; Tang et al., 2020; Workshop et al., 2023;
Zhu et al., 2024). However, translating cultur-

ally adapted entity names remains difficult (Hersh-

covich et al., 2022) due to: 1) The need for transcre-

ation—creative adaptation beyond literal transla-
tion (Gaballo et al., 2012) 2) Constantly emerging
entities, which frozen LLM weights cannot capture

(Lazaridou et al., 2021; Hu et al., 2024) 3) Variabil-

ity in translation based on cultural, geographical,

or temporal context (Hershcovich et al., 2022)

The SemEval-2025 Task 2 on Entity-Aware Ma-
chine Translation (EA-MT) (Conia et al., 2025)
addresses this challenge by requiring systems to
translate English sentences with named entities into
ten target languages, spanning both Latin (e.g., Ger-
man, Spanish) and non-Latin scripts (e.g., Japanese,
Arabic). For example, “What year did Roald
Dabhl release the novel The Witches?” should be
translated into German as “In welchem Jahr verof-
fentlichte Roald Dahl den Roman Hexen hexen?” —
using the localized title.

We present SALT * ! (SQL-based Approach for
LLM-Free Entity-Aware-Translation), a simple yet
effective solution to this challenge. While based
on neural machine translation (Team et al., 2022),
SALT avoids the complexity of additional neural
components for entity handling and the parametric
overhead of modern LLMs. Instead, it leverages ef-
ficient SQL-based entity retrieval, constrained neu-
ral translation via logit biasing, and explicit entity
annotations. Our system achieves state-of-the-art
results among approaches without gold-standard
data (e.g., Wikidata IDs) during testing, while main-
taining significantly lower computational costs (Co-
nia et al., 2025).

Our key contributions are:

* A parameter-efficient entity-aware translation ap-
proach that achieves competitive results without
additional trainable components beyond the base
model.

» Evidence that, for well-structured multilingual
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knowledge bases, simple SQL-based retrieval
can rival complex neural methods while being
significantly more efficient.

* Comprehensive ablation studies comparing re-
trieval and integration strategies, showing that
explicit knowledge integration via entity annota-
tions and logit biasing outperforms added neural
complexity or increased parameter counts (Zhang
et al., 2018; Lewis et al., 2021).

While  LLM-based  approaches achieve
marginally better results in our ablation studies,
SALT © comes remarkably close with only a
fraction of the parameters.

2 Related Work

Named Entity Linking. Named Entity Linking
(NEL) maps entity mentions in text to knowledge
base entries. Early methods used string matching
and heuristics (Shen et al., 2015), while modern
approaches usually employ neural models that en-
code mention context and entity representations via
transformers and graph neural networks for better
disambiguation (Kolitsas et al., 2018; Cao et al.,
2018; Wu et al., 2020; Conia et al., 2024). Many
state-of-the-art systems follow a two-stage process:
efficient candidate generation followed by neural
re-ranking (Lai et al.; Hebert et al.).

Augmented Neural Translation. Neural Ma-
chine Translation (NMT) often struggles with low-
frequency or novel entities. Retrieval-augmented
techniques incorporate external translations at in-
ference time (Zhang et al., 2018), while lexically
constrained decoding enforces correct entity trans-
lation (Hokamp and Liu, 2017). Other methods in-
tegrate external knowledge via data augmentation
or explicit entity translation modules (Campolungo
et al., 2022; Zeng et al.; Conia et al., 2024).

3 System Description

We propose a surprisingly simple yet effective two-
stage pipeline for entity-aware machine translation,
that focuses on parameter efficiency. Our approach
consists of (3.1) a deterministic entity retrieval and
translation lookup phase, followed by (3.2) a con-
strained neural translation step. Despite exploring
more complex methods in our ablation studies (Sec-
tion 6), this streamlined approach achieves highly
competitive results with significantly lower compu-
tational cost.

3.1 Entity Retrieval and Translation Lookup

Given an English source sentence and a target lan-
guage, our system first identifies relevant named en-
tities and retrieves their translations from a knowl-
edge base. This forms the first stage of our pipeline.
With Wikidata containing over 71 million entities?,
efficient candidate filtering is essential. To this end,
we implement a normalized string matching ap-
proach, leveraging SQL indexing for fast retrieval.

For an input sentence x = (wy,...,wy), we
generate all possible n-grams>, normalize them
(lowercasing and removing special characters), and
query our database for exact matches with identi-
cally normalized entity names.* Only entities with
available translations in the target language are con-
sidered.

For each exact n-gram matched entity s in the
database, we compute a relevance score prioritizing
longer entity matches:

score(s, x) = 0.5 - M +0.5- M
’chars(x)‘ ‘words($)|
This ensures multi-word entities are ranked higher
(e.g., “The Lord of the Rings” would score higher
than just “Rings”). This is based on our observa-
tion that longer, multi-word entities are more likely
to have non-trivial translations requiring special
handling, while shorter matches might simply be
components of these larger entities. Ties are bro-
ken using entity popularity (measured by Wikidata
history length, representing past edit activities).

For each input sentence =z, this process
yields a set of entity-translation pairs &, =
{(e1,t1),...,(ex,tx)}, where e; represents the
source entity text and ¢; its translation in the target
language.

This approach offers excellent scalability advan-
tages: it handles Wikidata’s massive entity collec-
tion efficiently through indexing, and unlike neural
approaches, can be dynamically updated with new
entities without retraining. This allows the system
to remain current as new entities emerge in the real
world.

3.2 Neural Translation with Knowledge
Integration

The second stage of our pipeline adapts the knowl-
edge integration approach introduced by Conia et al.

wikidata.org/wiki/Wikidata:Statistics

3 Up to k = 15, as this covers all entities in the datasets.

*The database construction scripts are available in our
GitHub repository under the /data/wikidata directory.
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(2024) to incorporate the retrieved entity transla-
tions into the translation process. Based on their
findings, we use the encoder-decoder 600M NLLB-
200 model (2022) as our base architecture.

Given a source text x = (w1, ..., wy) and its
corresponding entity-translation pairs £, we con-
struct an augmented input sequence:

2t = (wy,. .., wy,<meta>, €1, <translates_to>, t1),

where special tokens explicitly mark entity-
translation pairs. This augmented sequence pro-
vides the model with direct access to the high-
quality entity translation sourced from our knowl-
edge base.

Unlike Conia et al., who provided the transla-
tion model with multiple translation candidates,
our ablation studies (Section 6.3) show that select-
ing only the highest-scoring candidate significantly
improves performance. When no matched entity
is found in our SQL-based lookup, we simply re-
frain from amending entity-translation pairs to the
input sentence. This defaulting-to-base strategy en-
sures that unmatched entities do not degrade overall
translation quality. In principle, more sophisticated
fallback methods (e.g., approximate string match-
ing or partial re-ranking) could address near-miss
matches, but we found our simpler approach to be
sufficient for most test instances (Section 6.1).

To further encourage the model to use these cu-
rated translations in its output, we implement logit
biasing during the beam search decoding process.
This effectively creates a soft constraint that en-
courages the model to incorporate the retrieved en-
tity translations while maintaining the flexibility to
adapt to target language grammar and ensure over-
all translation fluency. To this end, we positively
bias all logits corresponding to tokens present in
the retrieved translation target (1), as these repre-
sent gold-standard entity renderings in the target
language (shown to be effective by Zhang et al.
(2018)):

p(ye|ly<t, x*) x exp(logits(yy)
+ b Wy € tokens(t;)])

where b is the bias parameter and ¥ the indica-
tor function. This mechanism allows us to guide
the translation process without forcing rigid token
copying that might result in grammatically incor-
rect output. Our approach improves upon Conia
et al. (2024) in two ways: 1) selecting only one en-
tity translation per instance, which enhances accu-

racy (Section 6), and 2) combining explicit knowl-
edge integration with logit biasing, ensuring high
entity translation accuracy without compromising
overall fluency.

4 Experiments and Results

4.1 Experimental Setup

We evaluate our approach on the XC-Translate
dataset (Conia et al., 2024), which includes 7,000
development and 50,000 test samples evenly dis-
tributed across ten target languages.

Following task guidelines, we train on both the
development split and external data. For the latter,
we use the Mintaka dataset (Sen et al.), a multilin-
gual QA dataset with Wikidata annotations, suit-
able for entity-aware translation. To maintain qual-
ity comparable to XC-Translate, we apply strict
filtering: 1) The translated entity must appear in
the target sentence. 2) The Levenshtein distance
(Miller et al., 2009) between source and target en-
tity translation must exceed two characters to ex-
clude trivial cases. This retains 40% of Mintaka
while aligning it with XC-Translate’s sample char-
acteristics. 5. We combine these filtered samples
with the development set in a 1:1 ratio, which our
ablation studies (Section 6) show to strike a fair
balance between performance and training time.

4.2 Training Configuration

We fine-tune the 600M NLLB-200 model (Team
et al., 2022) using AdamW (Loshchilov and Hut-
ter, 2019) with a 1e-5 learning rate. Training takes
~1.5 hours on NVIDIA L40 GPUs, while evalu-
ation, including COMET score computation, re-
quires significant additional time. Full training
parameters are in Appendix A.

4.3 Evaluation

The task employs two complementary metrics: M-
ETA (Manual Entity Translation Accuracy) mea-
sures entity translation quality by checking for
correct translations in system outputs via case-
insensitive substring matching (Conia et al., 2024).
COMET (Rei et al.) assesses overall translation
quality using a neural model trained to predict hu-
man judgments of fluency and adequacy given the
target translation. Systems are ranked using the

SMintaka provides data for Arabic, French, German, Hindi,
Italian, Japanese, Portuguese and Spanish, of which we use
the six languages that overlap with XC-Translate (Arabic,
German, Spanish, French, Italian and Japanese). This means
we lack Mintaka data for Korean, Chinese, Thai and Turkish.

854



harmonic mean of both metrics, ensuring neither
entity accuracy nor translation fluency is dispropor-
tionately favored.

5 Results

Table 1 compares our system’s performance to se-
lected others across ten target languages. Our ap-
proach achieves an M-ETA score of 71.66% and
a COMET score of 92.52, ranking highest among
systems not accessing gold-standard Wikidata en-
tity IDs in inference, with a HM-Score of 80.42.

Our SQL-based retrieval and constrained neu-
ral translation prove effective across all languages,
outperforming both the top overall LLM-based sys-
tem by FII-UAIC-SAI (78.17) and the next best
non-LLM-based system by team Zero (47.79).6
The substantial 25-point gain over the baseline by
Conia et al. (55.32) underscores the value of our
small but substantial methodological refinements
outlined above.

Performance is strongest on languages with sub-
stantial Mintaka training data (Arabic, German,
Spanish, French, Italian, and Japanese), where
M-ETA scores range from 72.20% to 81.72%.
Chinese remains the most challenging (45.27%
M-ETA), with FII-UAIC-SAI surpassing our sys-
tem by 17.23 points.

For reference, we include the top-performing
shared task submission (pingan_team) in gray,
achieving a remarkable 91.79 overall using gold
Wikidata annotations at inference. While this limits
real-world applicability, it demonstrates the high
potential upper bound of the dataset.

6 Ablations and Analyses

Having established the effectiveness of our mini-
mal approach, we now investigate both the validity
of our design choices and the potential gains in
more complex alternatives, allowing us to quantify
trade-offs while confirming our core architectural
decisions.

6.1 What are the Limits of String Matching?

Our SQL-based approach achieves 83.05% Re-
call@1 for identifying the correct entity ID and
72.07% Rec@1 for retrieving the exact translation
used in the target sentence (Table 2). The 83.05%

%We define LLM-based approaches as those utilizing
decoder-only transformer models with billions of parame-
ters, such as GPT (Brown et al.) or Llama (Grattafiori et al.)
variants, as opposed to our encoder-decoder architecture with
significantly fewer parameters.

entity identification performance is comparable to
the 85.90% Rec@1 reported by Conia et al. using a
neural retriever, suggesting our lightweight method
offers a good efficiency-performance trade-off.

Dataset analysis highlights inherent retrieval lim-
itations: “only” 97.74% of correct entities appear
verbatim in the source, setting an upper bound,
while another 0.46% differ slightly (edit distance
<3). The remaining 2.26% vary significantly,
where dense retrieval might help, but we felt the
computational cost wouldn’t justify these minimal
theoretical gains, making our string matching ap-
proach a reasonable compromise.

Even with gold-standard entity IDs, only 84.39%
of Wikidata translations match target sentence ren-
derings, with 10.52% differing substantially (edit
distance >3). This discrepancy imposes an 84.39%
M-ETA ceiling, irrespective of retrieval method.

6.2 Should we use an LLM-based Reranker?

To assess how close we can get to the theoretical up-
per bounds identified above, we evaluate two well
established neural reranking approaches beyond
our SQL-based retrieval (Appendices B and C.1):
a fine-tuned transformer-based cross-encoder and
an LLM-based method (Table 3). The pre-trained
transformer showed negligible gains in zero-shot
settings, but fine-tuning improved Rec@1 by 6.22
points from 72.07% to 78.29%. For the LLM-based
approach, we employ GPT-40 mini’ with a struc-
tured prompt that considers sentence context and
entity metadata, achieving a slightly worse 77.26%
Rec@].

When integrated into the full translation pipeline
(Table 4), it is able to retain almost all the im-
provement, boosting the M-ETA score by 5.47% to
77.13% without affecting translation quality. How-
ever, we chose to exclude neural rerankers to keep
the pipeline simple, transparent, and computation-
ally efficient and “explainable”.

6.3 How Many Entities to Provide for
Translation?

Contrary to expectations based on Conia et al.’s
(2024), who provided the top-3 candidates to the
translation model (Section 3.2), we found that ap-
pending only one entity candidate performed sig-
nificantly better (Figure 1). This may be due to
reduced ambiguity: while 12.9% of correct entity
translations appear only in positions 2-5 and are

"GPT-40 mini, wused model
‘gpt-40-mini-2024-07-18’

with  timestamp
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AR DE ES FR T JA KO TH TR ZH Avg

System M C M C M C M C M C M C M C M C M C M C M C H

pingan_team 91.73 93.64 86.35 9405 90.13 9509 91.56 9431 93.02 9580 9141 9536 90.24 9544 O91.18 93.55 84.13 9570 81.26 94.44 89.10 94.74 91.79
FII-UAIC-SAT 6642 91.35 6698 9130 7235 9258 7246 90.59 75.79 9271 67.03 93.56 66.02 9278 6525 88.62 67.56 91.63 62.50 91.25 6824 91.64 78.17
Zero 37.50 90.82 4032 90.62 46.46 92.38 33.16 89.06 39.37 90.78 3528 92.57 3597 91.78 1375 82.61 46.50 93.83 841 88.98 33.67 90.34 47.79
Conia et al. 50.60 - 36.50 - 47.80 - 39.80 - 47.50 - 4220 - 47.10 - 39.60 - 49.70 - 10.60 - 41.10 84.60 5532
NLLB-200 20.50 - 19.60 - 31.50 - 24.70 - 26.40 - 8.40 - 17.70 - 1.80 25.40 - 3.10 - 1790 81.90 29.38

Oursystem © 8172 9320 73.77 9234 74.58 93.60 74.77 91.84 77.62 9336 7220 93.02 74.24 9297 6559 90.64 76.86 94.47 4527 89.75 71.66 92.52 80.42

Table 1: Results across languages with (M)-ETA and (C)omet scores, along with (H)armonic Mean. Language
codes: Arabic (AR), German (DE), Spanish (ES), French (FR), Italian (IT), Japanese (JA), Korean (KO), Thai (TH),
Turkish (TR), and Chinese (ZH). Results in bold indicate highest scores among systems not using gold data. The
pingan_team results were the best overall, but use gold data and are thus not directly comparable with our system.
NLLB-200 represents the non-finetuned NLLB model with results as reported by Conia et al..

Test set retrieval performance

Average across all languages

Metric Recall@1l Recall@3 Recall@5 Reranking method M-ETA Comet HM-Score
Entity ID 83.05% 91.65% 92.96% SQL-only (3.1) 71.66% 92.52%  80.42%
Entity name 87.56% 93.79% 94.09% Transformer reranker 77.13%  92.75% 84.22%
Entity translation ~ 72.07% 80.59% 81.60%

Conia et al. 85.90% 92.10% - Table 4: Reranking impact on translation performance.

Table 2: SQL-based retrieval performance on the devel-
opment set, showing both entity identification (Entity
retrieval) and correct translation retrieval (Entity transl.).

Translation retrieval performance

Reranking method R@1 R@3 R@5

SQL-only (3.1) 72.07% 80.59% 81.60%
Transformer reranker 78.29% 81.43% 81.77%
LLM reranker 77.26% 79.81% 79.88%

Table 3: Comparison of entity reranking approaches.

omitted, the confusion from multiple candidates
apparently outweighs this potential gain.

This insight shaped our system design, revealing
that while the translation model effectively uses our
amended syntax as a glossary, it struggles when si-
multaneously tasked with selecting between entity
candidates. In our parameter-efficient neural trans-
lation pipeline, clarity in entity mapping proves
more valuable than maximizing coverage.

6.4 Should we Augment the Training Data?

We evaluated four training data configurations Ta-
ble 5): XC-Dev only (~7,000 samples, 78.90%
HM-Score), filtered Mintaka only (~50,000 sam-
ples, 75.41% HM-Score), and two combinations
in different ratios. While XC-Dev outperformed
Mintaka alone, their combination yielded the best
results (80.42% and 80.58% HM-Score for 1:1
and 7:1 ratios, respectively). The 1:1 ratio (our
choice) balances performance and training effi-
ciency, whereas the 7:1 ratio (full datasets) offers
only marginal gains at much higher computational

—@— HM-Score

-— M-ETA —@— Comet
T T

c— —0

90

Score (%)
~ oo}
(==} (=)
T T
(0(
(=)}
N
»
=]
(=)}
(=)
N
j%)
W

60 1 1 1

Number of appended candidates (k)

Figure 1: Impact of different Top-k append strategies.

cost. These findings highlight the datasets’ com-
plementary nature and the diminishing returns of
increasing amounts of data beyond a certain point.

6.5 What’s the Impact of our Logit Biasing?

As the last substantial difference between our ap-
proach and that of Conia et al. (2024), we analyze
the impact of our logit biasing strategy and com-
pare it to an additional constraining mechanism.
Our main system employs logit biasing (Zhang
et al., 2018), applying a positive bias to tokens from
the retrieved entity translation during generation,
guiding output without adding model parameters.
As an alternative, we evaluate a pointer-
generator mechanism (See et al.), which augments
the model with a trainable copy component. Like
logit biasing, it aids token selection but is learnable.
Instead of direct copying, it computes an attention-
based probability distribution over input tokens
alongside the vocabulary distribution, combining
them via a learnable gate to balance generation and
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Average across all languages

Training data M-ETA Comet HM-Score
XC-Dev only 69.62% 91.03%  78.90%
Mintaka only 64.87% 90.03%  75.41%
Mintaka + XC-Dev (1:1) 71.66% 92.52% 80.42%
Mintaka + XC-Dev (7:1) 71.78% 92.61% 80.58%

Table 5: Impact of different training data combinations.

copying. While successfully applied in translation
(Zeng et al.), it increases architectural complexity
and requires additional parameters.

Average across all languages

Constraint method M-ETA Comet HM-Score
No constraint 68.30% 92.71% 78.65%
Logit bias (3.2) 71.66% 92.52% 80.42%
Pointer generator 69.10% 92.63%  79.16%
PG + Logit bias 73.47% 92.31% 81.81%

Table 6: Performance of different constraint methods.

As shown in Table 6, our logit biasing approach
improves M-ETA by 3.36 percentage points over
the unconstrained baseline with minimal impact
on translation quality, justifying its inclusion in
our main pipeline. The pointer generator also en-
hances entity translation but less effectively than
logit biasing, despite adding parameters.

Interestingly, combining both methods achieves
the best results (M-ETA 73.47%, HM-Score
81.81%), suggesting a synergistic effect between
the biasing and the pointer generator’s mechanism.

For our final system, we retain the simpler logit
biasing approach, balancing performance and pa-
rameter efficiency to maintain a lightweight yet
effective model.

6.6 “Why didn’t you just use an LLM?”

Average across all languages

LLM approach M-ETA Comet HM-Score
SALT " (no LLM) 71.66% 92.52% 80.42%
+ Reranker&Pointer 77.77% 92.63% 84.55%
LLM direct translation 78.77% 93.42% 85.17%
Vanilla NLLB + LLM 72.35% 87.48% 78.87%
Finetuned NLLB + LLM  77.13% 91.81% 83.63%

Table 7: Comparisons to our best non-LLM configura-
tion (+ Reranker&Pointer) which combines transformer
reranking (Section 6.2) with pointer generator and logit
biasing (Section 6.5).

Lastly, we explore LLMs in our translation

pipeline, testing three GPT-40 mini’-based ap-
proaches (Table 7). For comparison, we include
our baseline SALT © (80.42% HM-Score) and our
best non-LLM system (84.55%), which integrates
a transformer reranker, pointer generator, and logit
biasing (Sections 6.2 and 6.5).

First, we assess whether an LLM can refine
finetuned NLLB translations by correcting entity
mistranslations while preserving overall quality
(Appendix C.4), as unlike our neural translation
model (Section 6.3), LLMs should excel at disam-
biguation tasks like this. Providing the translation
and top-5 entity candidates yields an 83.63% HM-
Score, slightly below our best non-LLM system.
A similar approach using vanilla (non-finetuned)
NLLB translations performs worse (78.87%), sug-
gesting LLMs struggle with lower-quality base
translations (Appendix C.3).

Surprisingly, our best result (85.17% HM-Score)
comes from direct LLM translation, using only the
source text and entity candidates (Appendix C.2).
However, the modest 0.62-point gain over our best
non-LL.M system comes at a cost: higher com-
putation, API expenses, latency (>2s per sample),
and reliance on closed-source models. This narrow
performance gap validates our parameter-efficient
pipeline as a competitive alternative that avoids
these limitations.

7 Conclusion

We introduced SALT " , a parameter-efficient,
entity-aware machine translation approach that
achieves first place among models not using gold
data during translation. Our ablation studies chal-
lenge several intuitive assumptions: simpler re-
trieval methods often outperform complex ones;
clarity trumps coverage when providing entity can-
didates; and lightweight techniques like logit bias-
ing can match parameter-heavy approaches. The
narrow gap between our system and LLM-based
alternatives (0.62 pp) demonstrates that parame-
ter efficiency need not sacrifice translation quality.
Our work counters the prevailing trend toward ever-
larger models, suggesting that targeted knowledge
integration can be more effective than simply scal-
ing parameters for specialized translation tasks.

Whilst achieving state-of-the-art results without
gold-standard data, challenges remain, particularly
in our Chinese translations and in generalizing to
more diverse real-world translation scenarios.
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Limitations

Despite SALT * °s strong performance, a few lim-
itations remain: (1) our approach is bounded by
Wikidata coverage, with a theoretical M-ETA ceil-
ing of 84.39% (Section 6.1) far from the top sub-
missions in the task, which use gold data; (2) per-
formance varies across languages, with Chinese
translations presenting a particular challenge (Sec-
tion 5) — a limitation we were unable to address due
to language barriers; (3) our single-entity selection
strategy (Section 6.3) works well for the benchmark
at hand but would likely struggle with more diverse
texts containing multiple complex entities per sen-
tence; (4) approximately 2.26% of cases with sub-
stantial entity transformations remain problematic
(Section 6.1) — a percentage likely to increase in
less curated texts; and (5) though our parameter—
efficient approach comes within 0.62 percentage
points of LLM-based alternatives (Section 6.6),
more sophisticated LLM implementations could
potentially widen this gap.
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A Training

All experiments were conducted on NVIDIA L40
GPUs. A complete training and evaluation run took
approximately 3 hours, with a significant portion
dedicated to evaluation, including the computation
of COMET scores.

We used the
facebook/n11b-200-distilled-600M® model
(Team et al., 2022) as our base architecture. The
hyperparameters used for the subsequent fine-
tuning are listed in Table A1l. For a complete list
of hyperparameters, we refer to our configuration
file at src/conf/translation_config.yaml.

Parameter Value
Number of epochs 10
Batch size 16
Gradient accumulation steps 4
Effective batch size 64
Optimizer AdamW
Learning rate le-5

Loss function Cross-entropy
Max sequence length (In & Out) 512

Precision bfloat16
Logit bias parameter (b) 5.0
Beam search 5 beams

Table Al: Training hyperparameters used in our experi-
ments.

B Transformer Reranker Details

transformer-based
approach, we  utilized the Roberta
(Liu et al, 2019) based pre-trained
jina-reranker-v2-base-multilingual®
cross-encoder model that takes a query-document
pair as input and produces a relevance score. The
model operates as follows:

Given a source text x and a candidate entity e;
with associated metadata (including name, descrip-
tion, and available translations), we represent the
relevance score as:

For our reranking

s(ei, x) = fo(w,r(ei))

where fy is our transformer model with param-
eters 0, and r(e;) is a textual representation of the
entity that concatenates its title, description, and

8https://huggingface.co/facebook/
nllb-200-distilled-600M

9https://huggingface.co/jinaai/
jina-reranker-v2-base-multilingual
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translation. We fine-tune the model using margin
ranking loss:

L =max(0,s(e”,z) — s(et,z) +7)

where e is the correct entity, e~ is an incorrect
entity, and + is the margin (set to 0.3).

The model is fine-tuned using a learning rate
of 2e-5 with the AdamW (Loshchilov and Hutter,
2019) optimizer. Training samples are created by
using the correct entity as the positive example
and sampling hard negatives from the top 5 results
of our SQL-based retrieval. Training converged
rapidly, requiring less than one epoch on a quarter
of the development set to achieve optimal perfor-
mance.

C LLM prompt

In all LLM interactions, the DsPy!® framework
(Khattab et al.) is used to automatically parse the
input and output of the LLM with the prompts
being defined via “Signatures” as outlined

C.1 Reranking prompt

The following prompt is provided to the LLM to
rerank the retrieved entities.

Retrieve all distinct entity candidates
from a provided context that might be
relevant for disambiguation in a
machine-translation task.

Requirements:

1. High Recall:

- Include every candidate that could be the
correct reference, knowing that

the correct one is almost always among the
list.

2. Translation Quality:

- Do not add candidates with ambiguous
translations; if unsure, include them

and let later stages decide.

3. Handle Ambiguity:

- When entities share names, include all
with potential relevance based on their
descriptions.

4. Ranking:

- Return a sorted list of
identifiers prioritizing:

* Contextual clues from the input sample,
* Popularity and provided score,

* Clear descriptive evidence matching the
candidate’s role in the sentence.

candidate

Objective:

Ensure that the correct candidate is
positioned at the top of the candidate
list.

Ohttps://github.com/stanfordnlp/dspy

Input Fields:

- context (str):

Original input sample that provides the
context for disambiguation.

- candidates (list of EntityCandidate):

A list of candidate entities, each with
detailed metadata obtained via fuzzy
matching.

Output Field:

- selected_candidates (list of str):
Disambiguated 1list of relevant candidate
identifiers (e.g., wikidata_ids),

sorted by contextual relevance.

C.2 Self Translation prompt

The following prompt is provided to the LLM to
generate the translations by itself, only provided
with the input sentence, target language and entity
candidates.

Generate a high-quality translation by
accurately rendering named entities from
candidate data.

Given only the original source sentence,
the model should generate the translation

on its own, while using the candidate
entity information—each with a high
likelihood

of containing the correct translation—to
incorporate the appropriate named entities.
Not every provided candidate is relevant,
so selectively apply those that enhance

the contextual accuracy of the translation.

Input Fields:

- source_sentence (str):

The original input sentence in English that
requires translation into the target
language.

- target_locale (str):

The target language locale, e.g.
German.

- candidates (list of EntityCandidate):

A list of candidate entities with their
potential translations and associated
metadata. Each candidate has a high
likelihood of being correct, but not every
candidate is necessarily relevant.

’de’ for

Output Field:

- final_translation (str):

The final translation generated by the
model, with accurately rendered named
entities based on the candidate evidence.

C.3 Vanilla NLLB Translation Refiner
prompt

The following prompt is provided to the LLM to
refine translations from the vanilla NLLB model.
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Refine a vanilla NLLB translation by
selectively incorporating named entities
from candidate data.

The wvanilla translation produced by
the NLLB model might contain errors or

omissions in the rendering of named
entities.
Utilize the provided candidate entity

information—each holding a high probability
of correctness—to adjust the translation,
ensuring accurate rendering of those
entities while recognizing that not all
candidates are relevant to the context.

Input Fields:

- nllb_translation (str):

The initial translation produced by the
vanilla NLLB model, which may contain
omissions or errors in the depiction of
named entities.

- target_locale (str):

The target language locale, e.g.
German.

- candidates (list of EntityCandidate):

A list of candidate entities with their
potential translations and related
metadata. Although these candidates are
highly likely to include the correct
entity translations, not every candidate
may be applicable in the specific context.

"de’ for

Output Field:

- final_translation (str):

The final translation where the named
entities have been refined to accurately
align with the most relevant candidate
data.

German.

- candidates (list of EntityCandidate):

A list of candidate entities with their
expected translations and metadata.

These candidate translations are considered
correct and should be applied to fix
or supplement the named
translations.

entity

Output Field:

- refined_translation (str):

The final translation where named entity
translations are corrected to match the
gold standard candidate information.

C.4 Finetuned Translation Refiner prompt

The following prompt is provided to the LLM to
refine translations from the finetuned NLLB model.

Refine a finetuned translation by ensuring
that all named entity translations

align with the candidate data, which is
considered correct.

Occasionally, the finetuned nllb model may
apply a completely wrong candidate

or miss additional relevant candidates for
named entities.

Use the provided candidate details, whose
translations are considered the gold
standard, to fix any wrong entity

translations and to add any missing ones.
Only adjust the named entity expressions,
preserving the overall translation quality.

Input Fields:

- finetuned_translation (str):

The high-quality translation from the
finetuned nllb model, which may contain
errors in named entity translations.

- target_locale (str):

The target language locale, e.g. ’de’ for
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