SALT at SemEval-2025 Task 2: A SQL-based Approach for LLM-Free Entity-Aware-Translation

Tom Volker, Jan Pfister, Andreas Hotho


Abstract
Entity-aware machine translation faces significant challenges when translating culturally-adapted named entities that require knowledge beyond the source text.We present SALT (SQL-based Approach for LLM-Free Entity-Aware-Translation), a parameter-efficient system for the SemEval-2025 Task 2.Our approach combines SQL-based entity retrieval with constrained neural translation via logit biasing and explicit entity annotations.Despite its simplicity, it achieves state-of-the-art performance (First Place) among approaches not using gold-standard data, while requiring far less computation than LLM-based methods.Our ablation studies show simple SQL-based retrieval rivals complex neural models, and strategic model refinement outperforms increased model complexity.SALT offers an alternative to resource-intensive LLM-based approaches, achieving comparable results with only a fraction of the parameters.
Anthology ID:
2025.semeval-1.117
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
852–864
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.117/
DOI:
Bibkey:
Cite (ACL):
Tom Volker, Jan Pfister, and Andreas Hotho. 2025. SALT at SemEval-2025 Task 2: A SQL-based Approach for LLM-Free Entity-Aware-Translation. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 852–864, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
SALT at SemEval-2025 Task 2: A SQL-based Approach for LLM-Free Entity-Aware-Translation (Volker et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.semeval-1.117.pdf