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Abstract

Large Language Models (LLMs) suffer from a
critical limitation: hallucinations, which refer
to models generating fluent but factually incor-
rect text. This paper presents our approach
to hallucination detection in English model
outputs as part of the SemEval-2025 Task
3 (Mu-SHROOM). Our method, HalluRAG-
RUG, integrates Retrieval-Augmented Genera-
tion (RAG) using Llama-3 and prediction mod-
els using token probabilities and semantic sim-
ilarity. We retrieved relevant factual informa-
tion using a named entity recognition (NER)-
based Wikipedia search and applied abstractive
summarization to refine the knowledge base.
The hallucination detection pipeline then used
this retrieved knowledge to identify inconsis-
tent spans in model-generated text. This result
was combined with the results of two systems,
which identified hallucinations based on to-
ken probabilities and low-similarity sentences.
Our system placed 33rd out of 41, perform-
ing slightly below the ‘mark all’ baseline but
surpassing the ‘mark none’ and ‘neural’ base-
lines with an IoU of 0.3093 and a correlation
of 0.0833.

1 Introduction

The rise of Large Language Models (LLMs) has
brought attention to an important limitation they
have, a phenomenon often referred to as LLM
‘hallucinations’. This phenomenon occurs when
an AI-generated text contains or describes facts
that are not supported by the provided reference.
These facts do not necessarily need to be false
to be labeled a hallucination. Instead, they are
cases where the answer text is more specific than
it should be, given the information available in
the provided context. To further clarify what a
hallucination is, we provide the following example
introduced by Dopierre et al. (2021):

• Source Text: I am not sure where my phone
is.

• Model-Generated Paraphrase: How can I
find the location of any Android mobile?

As seen in this example, the generated text is flu-
ent but inaccurate concerning the source text. This
is noted by the generation of information that is
not found originally in the source text, specifically
referring to ‘Android mobile’.

The generation of false information can hinder
a model’s usefulness in many applications. More-
over, it can also be the cause for ethical concerns:
when a text is syntactically sound, people quickly
assume that it is also semantically sound. A user
being presented with false information can cause
considerable harm in many different domains.

The detection of hallucinations is an important
task in improving model trustworthiness, so it is
vital to develop and improve methods of halluci-
nation detection. In this context, SemEval-2025
Task 3: Mu-SHROOM, the Multilingual Shared-
task on Hallucinations and Related Observable
Overgeneration Mistakes was organized (Vázquez
et al., 2025)1. This year, the task inquires about
the exact text spans in which hallucinations occur,
as opposed to last year’s binary classification task
(Mickus et al., 2024). The organizers provided val-
idation data in ten different languages, from which
we only considered English.

Our approach to this particular task imple-
ments a combined model that implements Retrieval-
Augmented Generation (RAG) in combination with
factual information from Wikipedia and Llama-3,
as well as supplementary prediction models based
on token probabilities and low-similarity sentences.
Our method achieved place 33 out of 41 for the
English track in SemEval-2025 Task 3, performing
slightly below the ‘mark all’ baseline.

1Link to the official Shared Task website: https://helsinki-
nlp.github.io/shroom/
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2 Related work

First, we will discuss some related work that was
done during the previous iteration of this shared
task, SemEval-2024 Task 6 (Mickus et al., 2024).
One of the most common techniques across the
papers written on this task is the use of transformer-
based models and semantic similarity measures.
Markchom et al. (2024) employed SentenceTrans-
formers to generate embeddings for hypothesis and
target texts, comparing them via cosine similarity.
The aim was to detect hallucinations based on low
similarity scores.

Other groups pivoted towards prompt-based
methods. Borra et al. (2024) focused on zero-shot
and few-shot learning. In zero-shot learning, the
model relied on its pre-trained knowledge, using
carefully crafted prompts. Few-shot learning incor-
porated a small set of labeled data, improving the
model’s ability to detect more subtle hallucinations.
A large number of groups that participated used
similar models: models like Vectara, Mistral/Mix-
tral, DeBERTa, and GPT (3.5 or 4) were used very
commonly. The organizers note that especially
the GPT-based models work well: four out of six
top-scoring teams incorporated it in their approach
(e.g., Mehta et al. (2024); Obiso et al. (2024)).

Outside of the context of the Shared Task, much
work has been done regarding the use of RAG in
hallucination reduction. The main intuition be-
hind this approach is that the inclusion of factual
information (the ‘Retrieval’ part) will reduce the
generation of factually incorrect content (Gao et al.,
2024). The use of RAG for hallucination reduction
has been proven to be effective for multiple use
cases, like conversation (Shuster et al., 2021) or
structured outputs like workflow generation (Ayala
and Bechard, 2024). Considering RAG’s useful-
ness in hallucination reduction, it will be interest-
ing to see whether the addition of relevant retrieved
data also extrapolates to improved hallucination
detection. This approach is not well-represented in
the literature yet, so the merits of the method are
yet to be seen.

3 Data

The Shared Task data was provided in 14 languages
total, but for our approach, only the English data
was considered.

The organizers of the shared task released both
a validation set as well as a test set. The English
validation set comprised 50 data points, while the

test set, released at the start of the evaluation phase
(initially without labels), comprised 154 data points.
Each of the data points consists of the following
elements:

• ID: The identification of the data point.

• Lang: The language used.

• Model Input: The prompt given to the model.

• Model Output Text: The model-generated
output, which might contain hallucinations.

• Model ID: The identification for the model.

• Model Output Tokens: The tokenized model
output text.

• Model Output Logits: The raw, unnormal-
ized model output text.

• Soft Labels: The start and end indices of a
hallucination along with a probability score.

• Hard Labels: The start and end indices of a
hallucination, determined using majority vot-
ing among the annotators.

For the English datasets, the data points were
annotated by up to 13 annotators. Each annota-
tor was provided with the model output text and
relevant context. Then, they were instructed to
highlight each span of model output text that was
inconsistent with the given context. Annotators
were instructed to be as conservative as possible
when marking hallucinations.

Dataset % soft labels % hard labels

Validation 77.6% 28.9%
Test 78.4% 34.9%

Table 1: The % of model output text that was marked as
a hallucination.

Table 1 shows the percentages of model output
text that was marked as a hallucination by the an-
notators for both labels. This shows that the soft
labels show a relatively less conservative level of
annotation than the hard labels, which only span
roughly a third of the output text instead of three-
quarters for the soft labels.

The authors additionally released an unlabeled
training data set, comprising 809 data points for
English. However, we did not use this training set
for the development of our model as it did not fit
within our chosen approach.
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4 Method

As mentioned previously, our approach leverages
a form of RAG, an LLM, and two prediction mod-
els. For efficiency, we split our pipeline into two
segments: 1. Knowledge retrieval, and 2. Hallu-
cination detection. This pipeline is illustrated in
Figure 1.

4.1 Knowledge Retrieval

To retrieve relevant contextual information, we first
extracted all named entities present in the model
input, or prompt, provided by the dataset. For this,
we used spaCy’s NER-tagger (Honnibal and Mon-
tani, 2017). After collecting these named entities,
we filter out the unwanted labels (e.g., monetary en-
tities). The remaining named entities are then used
to fetch any Wikipedia page using the Wikipedia
API that possibly contains relevant information,
which was saved with its respective data point. As
a result, the number of retrieved pages per data
point varied depending on the length of the prompt
as well as the overall popularity of the categories
found in the prompt. This varied from 1 or 2 pages
to dozens of pages.

After retrieval, we computed the similarity be-
tween each sentence on each retrieved page and
calculated the average similarity score of each page.
We used the MPNet model 2 to calculate these sim-
ilarity scores, where a high score indicates that the
given sentence has a high chance of containing
relevant information. By setting a similarity thresh-
old, we narrowed down the amount of contextual
information by only utilizing the pages (max = 3)
with the highest similarity score. These pages were
preprocessed to remove notes, links, and references
and were saved to be summarized.

4.2 Summarization

Another crucial part of the knowledge retrieval
pipeline is the summarization model. As there
were still instances where the retrieved contextual
information was too elaborate, even after setting a
threshold, we implemented a summarization model.
This model transformed the contextual information
into a more concise and informative version, cre-
ating summarizations between 20 and 1291 words.
We used DistilBART-CNN-12-63 to carry out this
summarization task, which is a transformer-based

2https://huggingface.co/sentence-transformers/multi-qa-
mpnet-base-cos-v1

3https://huggingface.co/sshleifer/distilbart-cnn-12-6

model fine-tuned for abstractive summarization.
This model was chosen because it is relatively fast
and computationally light, minimizing the total
computational load of our pipeline.

As the model has a maximum token limit of 1024
tokens, information of a longer length needed to be
split into segments of text that were small enough
to fit within the model’s token limit while still pre-
serving meaningful context. After tokenization,
each chunk was provided to the model, which was
then transformed more concisely while maintain-
ing key information. Finally, repeated phrases were
filtered out to ensure that redundant or overlapping
content was minimized.

4.3 Hallucination Detection

Prompting For prompting, we used the Llama-
3 (8B) Instruct model along with its tokenizer
(AI@Meta, 2024). We experimented with several
prompting techniques, including zero-shot, few-
shot, and Chain-of-Thought (CoT). As our model
had difficulty taking on examples or instructions to
reason step-wise, the best-performing method was
the zero-shot technique. Additionally, we tested
different ways of instructing the model to extract
hallucinations: either as character spans or as lists
of words. We found that requesting words directly
was more effective. The final prompt was as fol-
lows:

Text : { o u t p u t _ t e x t }

F a c t u a l I n f o r m a t i o n : { wiki_summary }

Compare t h e t e x t w i th t h e f a c t u a l
i n f o r m a t i o n . What s p a n s i n t h e t e x t
a r e n o t c o n s i s t e n t w i th t h e f a c t u a l
i n f o r m a t i o n p r o v i d e d ?

P r o v i d e a l i s t o f words o r s p a n s i n
t h e e x a c t f o r m a t :

[ " word1 " , " word2 " , . . . ]

Do n o t r e t u r n a n y t h i n g o t h e r t h a n t h e
l i s t o f s p a n s .

I f t h e r e a r e no h a l l u c i n a t i o n s ,
r e t u r n [ ] .

The hallucination spans were extracted from the
model’s response using regular expressions.

Token Probability Analysis To detect low-
confidence tokens, we computed token probabil-
ities from the Llama-3 model as our next step.
Specifically, we calculated the log probabilities for
each token and converted them into probabilities
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Figure 1: Overview of our two-stage hallucination detection pipeline.

using the softmax function. We analyzed all tokens
in the generated text but paid particular attention to
content words (e.g., named entities, numbers, and
nouns) since these were more likely to contain fac-
tual claims. We identified low-probability tokens
by setting a threshold of 0.01. Tokens with proba-
bilities below this threshold were considered uncer-
tain and were saved as potential hallucinated char-
acter spans. The underlying intuition was that the
model assigns lower probabilities to tokens when
it is uncertain about their correctness, which often
correlated with hallucinated content.

Semantic Similarity-Based Detection In addi-
tion to probability analysis, we performed seman-
tic similarity assessment using a transformer-based
sentence embedding model, SentenceTransform-
ers’ multi-qa-mpnet-base-cos-v1 (Reimers and
Gurevych, 2019). All sentences in the model output
were compared against the retrieved factual knowl-
edge using this model to retrieve a cosine similarity
score. A cosine similarity threshold of 0.5 was
used, where a maximum similarity score below this
threshold was flagged as a potential hallucination.

Assembling Spans Since multiple methods gen-
erated hallucination spans, we merged overlapping
spans and removed spans exceeding text bound-
aries. These text boundaries refer to the length of
the model output text, as in some cases, identified
spans went beyond this length.

4.4 Evaluation Metrics

To evaluate the performance of our method for hal-
lucination detection, we used the official shared
task metrics: Intersection over Union (IoU) and
Spearman Correlation. The IoU score measures the
overlap between detected and ground-truth halluci-
nation spans:

IoU =
|Predicted Spans ∩ Ground Truth Spans|
|Predicted Spans ∪ Ground Truth Spans|

IoU is 1.0 if neither the reference nor the pre-
diction contains hallucinations. Otherwise, it cal-
culates the ratio of overlapping character indices
between predicted and gold-standard hallucination
spans.

The Spearman Correlation was used to evaluate
the ranking similarity between predicted and ref-
erence soft labels. If either of them contains no
variation, the score is binary. Otherwise, it com-
putes the Spearman rank correlation between the
two probability distributions over characters.

Any results are also compared to the baselines
provided by the Shared Task authors, which con-
sisted of a baseline that marked all characters as
hallucinations, a baseline that marked no charac-
ters as a hallucinations, and a simple neural model
based on XLM-RoBERTa4.

5 Results

In Table 2, the results of our method on the test
data are displayed, compared to the baseline scores
and the scores obtained by the best-performing
team. Additionally, in Table 3, we present our
model’s performance on the validation set. Our
system scores below the ‘mark all’ baseline on the
IoU metric, indicating that we fail to capture all
hallucination spans. However, the correlation re-
sults suggest that our system tends to over-identify
spans overall. In particular, we observed that the
next-token-based approach frequently flagged mul-
tiple short spans, but our chosen LLama3 model
does this as well for some sentences. This inflated
our false positive count and thus lowered our cor-
relation score. We think this is partly due to not

4https://huggingface.co/FacebookAI/xlm-roberta-base
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implementing additional logic to merge or filter
overlapping segments. Despite these shortcomings,
our approach still surpasses the ‘mark none’ and
‘neural’ baselines on IoU and scored 33rd overall.

Model IoU Correlation

Best Team (iai_MSU) 0.6509 0.6294
Baseline (mark all) 0.3489 0.0000
HalluRAG-RUG 0.3093 0.0833
Baseline (mark none) 0.0325 0.0000
Baseline (neural) 0.0310 0.1190

Table 2: Our test set results, compared to the provided
baselines and the best-performing team.

Precision Recall F1-score IoU

0.30 0.96 0.40 0.30

Table 3: Performance of our model on the validation
set.

To improve upon some shortcomings, we experi-
mented with removing the summarization module
from our pipeline, as well as removing the next
token prediction. All of these experiments low-
ered the IoU considerably. Adjusting the prompt
seemed to have the biggest impact on the IoU. We
also experimented with retrieving words instead of
character spans, and then reconstructing indices af-
terward, however this consistently produced worse
scores overall.

To better understand our model’s behavior, we
analyze three representative cases that contain
errors.

Input: "What did Petra van Staveren win a gold
medal for?"
Model Output: "Petra van Stoveren won a silver
medal at the 2008 Summer Olympics in Beijing,
China."
Gold Spans: [(25, 31), (45, 49), (69, 83)]
Detected Spans: [(12, 13), (15, 24), (25, 34), (35,
44), (45, 80)]
Analysis: The model correctly flagged key errors
(misspelled name, incorrect medal, fabricated
location) but over-predicted by marking addi-
tional parts of the sentence as hallucinated. This
suggests a need for better span-merging techniques.

Input: "How many genera are in the order
Erysiphales?"

Model Output: "The Elysiphale order contains 5
genera."
Gold Spans: [(30, 31)]
Detected Spans: [(25, 35)]
Analysis: The model mistakenly detected a
larger hallucination span than needed. It correctly
identified the incorrect taxonomic name but
over-marked the number as part of a broader span.
A more refined approach could improve precision
by more accurately isolating factual errors.

Input: "When did Chance the Rapper debut?"
Model Output: "Chance the Rapper debuted in
2011."
Gold Spans: [(29, 33)]
Detected Spans: [(0, 34)]
Analysis: Instead of isolating the incorrect year,
our system flagged the entire sentence as a hal-
lucination. This exemplifies a common issue
where token probability-based hallucination detec-
tion overextends spans.

These cases highlight key failure points in our
approach: entity misrepresentation, overgeneration,
and excessive span marking.

6 Conclusion and Future Work

In this work, we presented a retrieval-augmented
pipeline for detecting hallucinated spans in LLM
output, focusing on English data from the Mu-
SHROOM task. Our system combined token prob-
ability, factual checks, and summarized Wikipedia
context to highlight hallucinated spans. While our
approach outperformed two out of three baselines,
it often detected an overabundance of spans, re-
ducing precision and diluting overall performance.
In addition, the practical constraints of our chosen
model regarding input length and model parameters
restricted performance. Despite these challenges,
our results suggest that integrating retrieval meth-
ods and careful prompt engineering can help with
validating LLM output.

Future Work

Future work could include refining the method for
merging overlapping hallucination spans, poten-
tially creating a higher threshold for span inclusion.
Furthermore, exploring LoRA-style downscaling
or newer open-source models like DeepSeek might
help improve the performance of a RAG-based ap-
proach.
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