CCNU at SemEval-2025 Task 8: Enhancing Question Answering on
Tabular Data with Two-Stage Corrections

Chenlian Zhou'??, Xilu Cai'**, Yajuan Tong'->*, Chengzhao Wu'>*,
Xin Xu'?#, Guanyi Chen'?*, and Tingting He'>*'

"Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning
2National Language Resources Monitor and Research Center for Network Media
3Faculty of Artificial Intelligence in Education
4School of Computer Science, Central China Normal University
{g.chen, tthe}@ccnu.edu.cn
{myphyllis, cxilu@3, tongauan, wcz, xinxu}@mails.ccnu.edu.cn

Abstract

We present the system developed by the Cen-
tral China Normal University (CCNU) team for
the SemEval-2025 shared task 8, which focuses
on Question-Answering (QA) for tabular data.
Our approach leverages multiple Large Lan-
guage Models (LLMs), conducting tabular QA
as code completion. Additionally, to improve
its reliability, we introduce a two-stage correc-
tions mechanism, in which we instruct the LLM
to correct the code according to the judges of
whether the code is executable and whether the
answer obtained from executing the code is se-
mantically consistent with the question. The
experiment demonstrates that code correction
works but answer correction does not. Finally,
we discuss other unsuccessful approaches ex-
plored during our development process.

1 Introduction

Large language models (LLMs) have demonstrated
strong performance in question answering (QA)
tasks (Kamalloo et al., 2023; Mao et al., 2024),
including tabular QA (Chen, 2023), where inputs
consist of non-database tables. To systematically
evaluate the performance of LLMs on tabular QA,
Grijalba et al. (2024) introduced DataBench, a
benchmark comprising a diverse collection of tabu-
lar datasets spanning various domains and question
types.

Unfortunately, as noted in the evaluations by
Grijalba et al. (2024), LLMs remain unreliable for
tabular QA, with substantial room for improve-
ment across all question types and domains. To
address this challenge, Os’es Grijalba et al. (2025)
organized SemEval-2025 Task 8, based on the
DataBench benchmark, to investigate the capability
limits of LLMs in tabular QA. This paper presents
the solution developed by the Central China Nor-
mal University (CCNU) team.

*Corresponding Authors

841

Interestingly, the evaluations by Grijalba et al.
(2024) revealed that framing tabular QA as a code
completion task can significantly enhance the per-
formance of large language models (LLMs) com-
pared to directly answering questions. Specifically,
instead of providing the entire input table, they only
exposed the LLM to its meta-information (e.g., col-
umn names) and instructed it to generate a Python
function that computes the answer to the given
question.

As discussed in Grijalba et al. (2024), one
limitation of framing QA as code completion is
the reliance on a third actor—the Python inter-
preter—introducing multiple steps in the QA pro-
cess, each of which can introduce errors. Specifi-
cally: (1) The code generated by LLMs may con-
tain errors, leading the Python interpreter to return
error messages instead of valid answers. In the
evaluations by Grijalba et al. (2024), many incor-
rect responses were not actually undesired answers
but rather error messages. (2) Since LLMs in this
paradigm generate code without directly accessing
the final outputs their code produces, the answers
may be semantically irrelevant to the question. This
issue arises because LLMs cannot inherently en-
sure that the generated answers match the expected
type or format of the question.

Our solution builds upon the concept of QA as
code completion while specifically addressing the
two inherent issues mentioned earlier. To achieve
this, we introduce Two-Stage Corrections. In the
first stage, beyond simply generating code, our
approach instructs LLMs to refine their output by
incorporating corrections based on error messages
from the Python interpreter. In the second stage,
LLMs are prompted to verify whether the results
obtained from executing the code are semantically
consistent with the given questions.

In the following sections, we provide a detailed
introduction to the DataBench benchmark (Section
2) and our proposed solution (Section 3). We then

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 841-845
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Type Example
boolean True/False, Y/N, Yes/No
category apple

number 10, 20, 30
list[category] [apple, orange, banana]
list[number] [1,2,3]

Table 1: Types of QA pairs in DataBench.

analyze the effectiveness of our Two-Stage Correc-
tions (Section 4). While our results indicate that
code correction is successful, answer correction
falls short—Ilikely due to the limitations of LLMs
in accurately evaluating semantic consistency. Fi-
nally, we discuss other unsuccessful approaches
we explored during this shared task (Section 5) and
reflect on our key findings.

2 Task Description

SemEval-2025 Task 8 is built upon the DataBench
benchmark. DataBench consists of 65 tabular
datasets from various domains (Grijalba et al.,
2024). For each dataset, they hired human partici-
pants to write 20 questions, which resulted in 1,300
questions in total. To further improve diversity, it
was ensured that the collected questions covered 5
different question types, including boolean, cate-
gory, list[category], and list[number], as shown in
Table 1.

Additionally, Grijalba et al. (2024) also compiled
areduced version of DataBench with an aim of eval-
uating LLMs that are unable to process large tables,
namely, DataBench Lite. Specifically, for each ta-
ble in each dataset in DataBench, DataBench Lite
uses only the first 20 rows.

3 Methodology

As mentioned earlier, we follow Grijalba et al.
(2024) in formulating tabular QA as code comple-
tion and introduce a Two-Stage Corrections mecha-
nism to address errors arising in the two key stages
of this approach: code completion and code execu-
tion. This mechanism consists of code correction
and answer correction, which aim to improve the
reliability of generated solutions. An overview of
our method is illustrated in Figure 1. In this section,
we first describe how we incorporate the approach
of Grijalba et al. (2024) into our solution for tabu-
lar QA, followed by a detailed explanation of the
Two-Stage Corrections mechanism.

_|
LLM

RV g @ .y

Question Code Compiler Answer

Figure 1: Overview of two-stage corrections for table
QA as code completion.

Previous error: {error_message}
Please correct the following code:
{code}

Table 2: Prompt for Code Correction

3.1 Question Answering as Code Completion

Following Grijalba et al. (2024), we came up with
the prompt shown in Listing 1 for Tabular QA as
code completion.

Listing 1: Prompt for QA as Code Completion

++

Task Description:

1. Determine the type of the answer,
which should belong to one of the
following five types: boolean,
category, number, list[category],
list[number].

2. After determining the type,
complete the following function in
one line to answer the question.

3. Please specify the type as a

comment before the code, for example
Type: number

++

Question: {question}

Dataset columns: {columns}
def answer (df: pd.DataFrame):
df.columns = {columns}

return

The prompt begins with several lines of com-
ments that define the task the LLM needs to accom-
plish. Specifically, it instructs the LLM to generate
a single line of code based on the given question
and the meta-information of the table. To enhance
the model’s awareness of the question type, we in-
troduce a modification to the approach of Grijalba
et al. (2024) by adding an extra comment line that
asks the LLM to explicitly specify the question
type as a line of comment before completing the
code. The prompt concludes with the beginning of
a function definition, leaving the final line for the
LLM to complete. Once generated, the completed
code is executed in a Python interpreter to produce
the final answer.

842

Main Task: As a professional data analyst, your task is to
determine if the generated answer is correct based on the
provided tabular knowledge and question. Correctness is
defined as: the answer is completely consistent with the
tabular knowledge and accurately answers the question.
Judgment Criteria:

1. If the generated answer is completely consistent
with the factual content in the tabular data and di-
rectly answers the question, it is judged as "Cor-
rect".

2. If the generated answer is inconsistent with the tabu-
lar data or the requirements of the question, whether
it is a partial error or a logical error, it should be
judged as "Incorrect”.

Reasoning Requirements: As an expert, you need to
provide a step-by-step reasoning process, explaining how
to extract relevant information from the tabular knowledge
and verify the generated answer. The reasoning process
should include the following:
* Identify the source of information in the table that
is relevant to the question.
» Explain how this information supports or refutes the
generated answer.
* Compare the differences between the generated an-
swer and the tabular data, and explain the reasons
for the judgment.

Output Format:
¢ Correctness Judgment: [Correct/Incorrect]
* Reasoning Process: Detailed reasoning process,
explaining whether the answer is correct and the
reasons for it.

Example:

Input:

{example}

Current Input:

Tabular Knowledge: {table_knowledge}
Question: {question}

Generated Answer: {generated_answer}

Table 3: Prompt for judging the correctness of an an-
SWer.

3.2 Two-Stage Corrections

After obtaining the code, we perform our two-stage
corrections: before and after the Python interpreter
successfully generates the final output.

3.2.1 Code Correction

If the code contains errors, which often occur due
to the LLM’s misinterpretation of the tabular struc-
ture, the interpreter returns an error message in-
stead of a valid output. To correct the code, we
prompt the LLM to revise its own code based on
the error message, using the instruction provided
in Table 2.

3.2.2 Answer Correction

To verify whether the answers generated from suc-
cessfully executed code are semantically consistent

with the given questions, we employ two strategies:
(1) Direct Answer Evaluation: We instruct another
LLM to assess whether the answer is correct or in-
correct based on the given question and table, using
the prompt in Table 3. Instead of providing a sim-
ple yes or no, the LLM is also required to explain
the reasoning behind its judgment. (2) Answer
Type Consistency Check: Since determining the
correctness of an answer may be too challenging
for LLMs, an alternative approach is to evaluate
whether the type of the generated answer aligns
with the expected question type, using the prompt
in Table 4. Finally, the LLLM receives both judg-
ment and explanation, which it then uses to refine
and regenerate the code accordingly.

Analyze the following question and determine
the expected answer type:

Question: {question}
Possible types:

* boolean: yes/no questions.

* number: questions requiring numeric an-
SWers.

* list{number]: questions requiring a list of
numbers.

* [ist[category]: questions requiring a list of
categories, where categories can include
date (e.g., 1970-01-01), text, or url.

* category: questions requiring a single cat-
egory, which can be a date, text, url, or
other categorical value.

Return only the type name, nothing else.

Table 4: Prompt for judging the correctness of an an-
swer’s type.

4 Experiments

In this section, we start with introducing the back-
bone LLLMs we used in our experiments and report
the experimental results.

4.1 Backbone LLMs.

In our experiments, we tried a range of open-
sourced LLMs as backbone models. Specifi-
cally, the models included Code Llama (Roz-
iere et al., 2023), Qwen2.5-72B-Instruct (Hui
et al., 2024), Llama-3-1-8B (Touvron et al., 2023),
DeepSeek-Coder-6.7B-Instruct (Guo et al., 2024),
DeepSeek-V3 (DeepSeek-Al, 2024), Qwen2.5-
72B-Instruct (Team, 2024), and DeepSeek-

843

Model w/lo CC w/CC
Code Llama 20.31 19.38
Qwen2.5-Coder-7B 67.50 68.44
Llama-3-1-8B 66.25 64.69
DeepSeek-Coder-6.7B 72.19 74.38
DeepSeek-V3 80.31 83.44
Qwen2.5-72B 82.81 85.00
DeepSeek-R1 (w/o Think) 79.69 85.00

Table 5: Results of different backbone LLLMs with and
without Code Correction (CC) on the development set
of DataBench.

Model w/lo CC w/CC
Code Llama 19.68 17.81
Qwen2.5-Coder-7B 67.19 69.69
Llama-3-1-8B 61.88 64.06
DeepSeek-Coder-6.7B 71.88 72.50
DeepSeek-V3 80.62 82.19
Qwen2.5-72B 81.56 85.31
DeepSeek-R1 (w/o Think) 72.81 85.72

Table 6: Results of different backbone LLLMs with and
without Code Correction (CC) on the development set
of DataBench Lite.

R1 (DeepSeek-Al, 2025). For DeepSeek-R1, we
did not enforce it to “think”, which may limit its
reasoning ability (making it often work in the same
way as DeepSeek-V3) but makes its outputs more
straightforward and easier to use in subsequent pro-
cessing steps.

4.2 The Effect of Code Correction

Table 3 and Table 4 present the performance of var-
ious LLMs, with and without code correction, on
DataBench and DataBench Lite, respectively. The
results indicate that code correction improves the
performance of nearly all backbone LLMs across
both datasets, demonstrating its effectiveness.

When comparing different backbone LLMs, we
find that DeepSeek-R1 (without Think) with code
correction achieves the highest performance on
both datasets.

4.3 The Effect of Answer Correction

To assess the effectiveness of answer correction,
we evaluated the accuracy of two judgment tasks:
determining the correctness of answers using the
prompt in Table 3 and verifying the correctness of
answer types using the prompt in Table 4. An exper-
iment using LLaMA-3.1-8B-Instruct as the judge
yielded accuracies of 31.10% for answer correct-
ness and 91.38% for answer type consistency. How-
ever, subsequent attempts to integrate this judgment

mechanism into our system proved unsuccessful,
as it either decreased overall performance or had
no measurable impact.

4.4 Final Solution

In summary, our final solution adopts DeepSeek-
R1 (without Think) as the backbone LLM, utilizing
only code correction to enhance performance.

5 Other Unsuccessful Attempts

We also experimented with an ensemble solution,
where multiple tabular QA systems generated an-
swers in parallel, followed by a majority vote to
determine the final response. However, this ap-
proach underperformed compared to simply using
DeepSeek-R1 (without Think) with code correc-
tion, suggesting that accuracy may lie in the hands
of a select few models rather than a collective con-
sensus.

6 Conclusion

This paper presents the Central China Normal Uni-
versity (CCNU) team’s solution to SemEval-2025
Task 8, the DataBench task, which requires sys-
tems to perform tabular QA. Building on the idea
of tabular QA as code completion, we further pro-
pose a two-stage correction mechanism comprising
code correction and answer correction to enhance
reliability. Experimental results show that code
correction effectively improves performance, while
answer correction does not.

References

Wenhu Chen. 2023. Large language models are few(1)-
shot table reasoners. In Findings of the Associa-
tion for Computational Linguistics: EACL 2023,
pages 1120-1130, Dubrovnik, Croatia. Association
for Computational Linguistics.

DeepSeek-Al. 2024. Deepseek-v3 technical report.
CoRR, abs/2412.19437.

DeepSeek-Al. 2025. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.
CoRR, abs/2501.12948.

Jorge Osés Grijalba, Luis Alfonso Urefia Lépez, Euge-
nio Martinez Camara, and José Camacho-Collados.
2024. Question answering over tabular data with
databench: A large-scale empirical evaluation of llms.
In LREC/COLING, pages 13471-13488. ELRA and
ICCL.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,

844

https://doi.org/10.18653/v1/2023.findings-eacl.83
https://doi.org/10.18653/v1/2023.findings-eacl.83

Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang,
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and
Junyang Lin. 2024. Qwen2.5-coder technical report.
CoRR, abs/2409.12186.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and
Davood Rafiei. 2023. Evaluating open-domain ques-
tion answering in the era of large language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5591-5606, Toronto, Canada.
Association for Computational Linguistics.

Rui Mao, Guanyi Chen, Xulang Zhang, Frank Guerin,
and Erik Cambria. 2024. GPTEval: A survey on as-
sessments of ChatGPT and GPT-4. In Proceedings of
the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 7844-7866,
Torino, Italia. ELRA and ICCL.

Jorge Os’es Grijalba, Luis Alfonso Ure na-L’opez,
Eugenio Mart’inez C’amara, and Jose Camacho-
Collados. 2025. SemEval-2025 task 8: Question
answering over tabular data. In Proceedings of the
19th International Workshop on Semantic Evalua-
tion (SemEval-2025), Vienna, Austria. Association
for Computational Linguistics.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

845

https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.18653/v1/2023.acl-long.307
https://aclanthology.org/2024.lrec-main.693/
https://aclanthology.org/2024.lrec-main.693/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

