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Abstract

The Food Hazard Detection (SemEval-2025
Task 9) advances explainable classification
of food-incident reports collected from web
sources, including social media and regula-
tory agency websites, to support timely risk
mitigation for public health and the economy.
This task is complicated by a highly imbal-
anced, long-tail label distribution and the need
for transparent, reliable AI. We present a ro-
bust Knowledge-Augmented Data approach
that integrates Retrieval-Augmented Genera-
tion (RAG) with domain-specific knowledge
from the PubMed API to enrich and balance the
training data. Our method leverages domain-
specific knowledge to expand datasets and cu-
rate high-quality data that enhances overall
data integrity. We hypothesize that Knowledge-
Augmented Data improves Macro-F1 scores,
the primary evaluation metric. Our approach
achieved a top-2 ranking across both subtasks,
demonstrating its effectiveness in advancing
NLP applications for food safety and contribut-
ing to more reliable food hazard detection1.

1 Introduction

The increasing volume of food incident reports
from various online sources highlights an urgent
need for automated detection systems. These re-
ports come from social media and official food
agency websites and reflect economic and public
health risks associated with foodborne illnesses and
contamination. SemEval-2025 Task 9 addresses
these challenges by developing systems that clas-
sify food incident reports and predict potential haz-
ards. Current methodologies, particularly data aug-
mentation from large language models (LLMs),
face hurdles such as hallucination, which compli-
cates the development of reliable, scalable solu-
tions. These challenges are further exacerbated

1https://github.com/phanben110/KAD-FoodHazard

Gemini Flash PubMedBERT ModernBERT

Ensemble Approach

Food Hazard 
Dataset

Training set Validation set Test set

Knowledge-Augmented Data Method

Fine-tune Sub-Task1 Fine-tune Sub-Task2

... ... ...

Figure 1: Overall System Architecture for Food Hazard
Detection Challenge Using the Knowledge-Augmented
Data Method.

by class imbalance in datasets and the need for
transparent, explainable AI.

To address these issues, we introduce a
Knowledge-Augmented Data approach that inte-
grates RAG (Lewis et al., 2020) to enhance data
quality with domain-specific knowledge. Our
method involves retrieving relevant data from
PubMed, generating augmented samples using ad-
vanced LLMs, filtering out low-quality data, and
fine-tuning models to maximize detection accuracy.
This comprehensive strategy enriches the dataset
and improves data integrity, leading to significant
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gains in Macro-F1 scores, the primary evaluation
metric for this task.

Our team achieved outstanding results in the
competition, securing 2nd place in Subtask 1
and Subtask 2. These outcomes demonstrate the
strength of our food hazard detection approach, in-
tegrating domain-specific knowledge to overcome
data limitations and highlighting RAG’s potential
in generating high-quality training data.

2 Background

2.1 Food Hazard Detection Dataset

SemEval-2025 Task 9 (Randl et al., 2025) focuses
on explainable classification of food incident re-
ports from web sources. It aids automated crawlers
in identifying food-related issues on platforms like
social media. The task comprises two subtasks:
(1) text classification for food hazard and product
category prediction (ST1), predicting both the type
of hazard and the product category; (2) food hazard
and product "vector" detection (ST2), predicting
the exact hazard and product mention.

The dataset comprises 6,644 expert-labeled re-
call titles (year, month, day, country, title, full text)
from various sources, covering 1,142 products in
22 categories and 128 hazards across 10 categories.
Table 1 shows the data splits. The data exhibit class
imbalance and label diversity (see Appendix D).

2.2 Related Works

Data augmentation techniques, such as back trans-
lation (Sennrich et al., 2016) and Easy Data Aug-
mentation (EDA) (Wei and Zou, 2019), have been
widely used in NLP to address data limitations,
though they risk altering meaning (Feng et al.,
2021). LLMs like ChatGPT (Achiam et al., 2024)
and Llama (Touvron et al., 2023) further enhance
augmentation, improving performance across var-
ious tasks (Ding et al., 2024). For instance, the
CLaC team in SemEval-2024 Task 4 (Nayak and
Kosseim, 2024) used paraphrase augmentation to
mitigate data scarcity, while GPT-4 has been em-
ployed in biomedical relation extraction to enhance
model performance (Phan et al., 2024).

RAG has also been explored for biomedical in-
formation retrieval, with a study by Li et al. (2025)
highlighting its potential to improve answer rel-
evance, noting challenges in grounding and con-
textual accuracy. Additionally, retrieval-based ap-
proaches using the PubMed API have been em-
ployed to inject external knowledge into NLP tasks.

Dataset Samples Classes
hazard-cat. product-cat. hazard product

Train 5,082 10 22 128 1,022
Val 565 9 18 93 312
Test 997 10 20 110 447

Table 1: Statistics of the SemEval-2025 Task 9 dataset,
including the number of samples and class distributions
for training, validation, and test sets.

For example, Thomo (2024) used PubMed queries
to extract relevant literature, integrating retrieved
documents into language models to enhance med-
ical question answering. Building on this line of
work, our Knowledge-Augmented Data method
leverages RAG to improve food hazard detection
with higher accuracy and reliability.

3 System Overview

Our proposed method, Knowledge-Augmented
Data for Food Hazard Detection, enhances the qual-
ity and diversity of training data by integrating
external knowledge and advanced filtering tech-
niques. As illustrated in Figure 2, it leverages
LLMs combined with Retrieval-Augmented Gen-
eration (RAG) using external sources such as the
PubMed API2 to generate high-quality augmented
data, boosting model robustness and performance.

The framework consists of four main steps: (1)
simplifying complex queries using LLMs to re-
trieve relevant external knowledge; (2) generating
augmented samples based on the retrieved context;
(3) filtering low-quality data through a score-based
validation process; and (4) fine-tuning multiple
deep learning models on the enriched dataset merg-
ing original and high-quality augmented samples.
Finally, as shown in Figure 1, an ensemble mecha-
nism combines predictions from different models
to achieve optimal results in food hazard detection.

3.1 Information Retrieval System

The Information Retrieval System is crucial in aug-
menting data by incorporating external knowledge.
Since complex queries often fail to return results
via the PubMed API, the system first simplifies
the original query Qcomplex into a more concise
form Qsimple using LLMs with Prompt 1 (see Ap-
pendix B). The complex query Qcomplex typically
contains detailed scientific terminology, multiple
conditions, or lengthy descriptions of food safety
concerns, which can be overly specific for effective

2https://pubmed.ncbi.nlm.nih.gov/
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Figure 2: The Knowledge-Augmented Data method for food hazard detection comprises four components: (1)
Information Retrieval, which collects relevant data from the PubMed API; (2) Data Generation, where large language
models (LLMs) generate augmented samples; (3) Validation Filtering, which scores and removes low-quality data;
and (4) Fine-tuning, which enhances LLMs and deep learning models to improve detection accuracy.

API retrieval. Through LLM-based transformation,
Qsimple retains the core information needs while
using more generalized terminology and focusing
on essential keywords, thereby increasing the like-
lihood of successful matches in the database.

This simplification ensures more effective doc-
ument retrieval. The refined query is then used
to fetch top-K relevant documents from PubMed,
which are subsequently embedded into dense vec-
tor representations for efficient storage and re-
trieval. To identify the most relevant documents,
cosine similarity is calculated between the original
query vector voriginal and each document embed-
ding vd:

sim(voriginal, vd) =
voriginal · vd

∥voriginal∥∥vd∥
(1)

The top-K most relevant documents are then se-
lected based on their similarity scores:

Dretrieved = {di | i ∈ argmaxK sim(voriginal, vdi)}
(2)

Only documents with a similarity score above a pre-
defined top-K threshold are selected for augmen-
tation, ensuring the dataset remains contextually
relevant and informative. Integrating this retrieval
system with RAG improves model accuracy in de-
tecting food hazards, as demonstrated in Section 5.

3.2 Data Generation

In this step, augmented samples are generated by
leveraging the retrieved context Dretrieved and the
original samples Soriginal. LLMs create new data
points by integrating the retrieved context with the
original content. This augmentation process en-
hances dataset diversity while maintaining seman-
tic relevance and contextual consistency. The data
generation process follows a structured approach
using Prompt 2 template provided in Appendix B
to ensure consistency and control over the augmen-
tation process.

3.3 Validation Filtering

After data generation, each augmented sample is
scored by an LLM-based function Gval, evaluating
its relevance and accuracy against the retrieved
context Dretrieved using Prompt 3 (see Appendix B).
The filtered set Sfiltered is defined as:

Sfiltered = {s | Gval(s,Dretrieved) ≥ 4} (3)

As shown in Figure 2, only samples scoring 4 or 5
are retained for their quality and contextual align-
ment. Samples scoring 0 are discarded as redun-
dant, while those scoring 1, 2, 3 are excluded for
inaccuracy or irrelevance, ensuring strong contex-
tual relevance and reliability.
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Subtask 1 (ST1) Subtask 2 (ST2)
Rank Team Name Score Features Rank Team Name Score Features

1 Anastasia 0.8223 META, TITLE, TEXT 1 SRCB 0.5473 TITLE, TEXT
2 MyMy (Our team) 0.8112 META, TITLE, TEXT 2 MyMy (Our team) 0.5278 META, TITLE, TEXT
3 SRCB 0.8039 TITLE, TEXT 3 PATeam 0.5266 TITLE, TEXT
4 PATeam 0.8017 TITLE, TEXT 4 HU 0.5099 TITLE, TEXT
5 HU 0.7882 TITLE, TEXT 5 MINDS 0.4862 TITLE, TEXT
6 BitsAndBites 0.7873 TITLE, TEXT 6 Fossils 0.4848 TITLE, TEXT
7 CSECU-Learners 0.7863 TITLE, TEXT 7 CSECU-Learners 0.4797 TITLE, TEXT
8 ABCD 0.7860 TITLE, TEXT 8 PuerAI 0.4783 N/A
9 MINDS 0.7857 TITLE, TEXT 9 Zuifeng 0.4712 N/A
10 Zuifeng 0.7835 N/A 10 ABCD 0.4576 TITLE, TEXT
11 Fossils 0.7815 TITLE, TEXT 11 BrightCookies 0.4529 TEXT
12 PuerAI 0.7729 N/A 12 Ustnlp16 0.4512 TITLE, TEXT
13 Ustnlp16 0.7654 TITLE, TEXT 13 BitsAndBites 0.4456 TITLE, TEXT
14 FuocChu_VIP123 0.7646 N/A 14 UniBuc 0.3453 TITLE, TEXT
15 BrightCookies 0.7610 TEXT 15 OPI-DRO-HEL 0.3295 TITLE, TEXT
16 farrel_dr 0.7587 TITLE, TEXT 16 VerbaNexAI 0.3223 TITLE
17 OPI-DRO-HEL 0.7381 TITLE, TEXT 17 CICL 0.3169 TEXT
18 madhans476 0.7362 TITLE, TEXT 18 Somi 0.3048 META, TITLE, TEXT
19 Anaselka 0.6858 TITLE, TEXT 19 TechSSN3 0.2712 TEXT
20 Somi 0.6614 META, TITLE, TEXT 20 Howard University-AI4PC 0.1380 TEXT

Table 2: Leaderboard results for SemEval-2025 Task 9 (Top 20). Our team My My (ST1: 2nd, ST2: 2nd) delivered
consistent, high-level performance across both subtasks, demonstrating the robustness and adaptability of our feature
set and modeling strategy. In contrast to top teams that showed significant variance between subtasks, such as
Anastasia (ST1: 1st, ST2: 21st) and SRCB (ST1: 3rd, ST2: 1st), our approach achieved both stability and accuracy
throughout the competition. META refers to temporal and geographical features (YEAR, MONTH, DAY, COUNTRY).

3.4 Fine-tuning with Enriched Data
The combined dataset, consisting of the original
training data Dtrain and filtered augmented samples
Sfiltered, forms the final training set:

Dfinal = Dtrain ∪ Sfiltered (4)

We fine-tune multiple pre-trained models: Gem-
ini Flash 2.0 (Team et al., 2024), PubMedBERT
(Gu et al., 2021), and ModernBERT (Warner et al.,
2024). This ensures that each model is adapted to
the enriched data for optimal performance.

3.5 Ensemble Strategy
To enhance prediction accuracy, we employ an en-
semble strategy that aggregates predictions from
multiple models. The predicted labels for each sub-
task are computed using weighted sums of class
probabilities:





ŷSubtask1 = argmax
y∈Y1

∑

i

wiPtask1,i(y)

ŷSubtask2 = argmax
y∈Y2

∑

i

wiPtask2,i(y)
(5)

Here, wi denotes the weight assigned to the i-
th model’s prediction. In our case, we use equal
weighting, i.e., wi =

1
N , where N is the total num-

ber of models. Ptask1,i(y) and Ptask2,i(y) represent

the predicted class probabilities for Subtask 1 and
Subtask 2, respectively. This ensemble strategy fa-
cilitates robust, consensus-based decision-making,
leading to more accurate food hazard predictions.
The detailed algorithm is provided in Appendix A.

4 Experimental Setup

4.1 Model Training and Augmentation

Our experimental setup integrates knowledge-
augmented data generation with fine-tuning on an
enriched Food Hazard dataset. From the dataset,
we utilize the following features: YEAR, MONTH,
DAY, COUNTRY, TITLE, and TEXT. These fields
are used for retrieval and input context for data
augmentation and model training. For data aug-
mentation, we employ GPT-3.5 Turbo3, Gemini
Flash 2.0 (Team et al., 2024), Llama 3.1 8B (Tou-
vron et al., 2023), and Mixtral 8x7 B (Jiang et al.,
2023) as LLMs, with a temperature setting of 0.7 to
balance creativity and factual consistency. Knowl-
edge retrieval is performed using vector embed-
dings from nomic-embed-text-v1 (Nussbaum et al.,
2025) stored in a Chroma vector database. The
input texts are chunked into 500-token segments
with 100-token overlaps. We also incorporate ex-

3https://platform.openai.com/docs/models/
gpt-3-5-turbo
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Method
Subtask 1 Subtask 2

hazard-category product-category Macro-F1 hazard product Macro-F1P R F1 P R F1 P R F1 P R F1
Gemini Flash 0.7395 0.7605 0.7477 0.8701 0.7803 0.8057 0.7767 0.6473 0.6694 0.647 0.3476 0.3591 0.3401 0.4936
PubMebBERT 0.7706 0.7837 0.7766 0.8703 0.788 0.8096 0.7931 0.6748 0.708 0.6787 0.3662 0.3867 0.3622 0.5204
ModernBERT 0.7807 0.7688 0.7734 0.8233 0.7548 0.774 0.7737 0.6879 0.6883 0.6768 0.3578 0.3774 0.3534 0.5151
Ensemble (MyMy) 0.7958 0.8121 0.8032 0.8677 0.8083 0.8193 0.8112 0.6866 0.7107 0.6892 0.3705 0.3928 0.3665 0.5278

Table 3: Performance comparison of methods for the Food Hazard Detection Challenge. The table reports precision
(P), recall (R), and F1-score (F1) for hazard-category and product-category in Subtask 1, and hazard and product in
Subtask 2. Final Macro-F1 scores highlight the ensemble as the top-performing method across both subtasks.

ternal knowledge via the PubMed API to support
retrieval-augmented generation (RAG). All aug-
mentation tasks are run on a dual NVIDIA GeForce
RTX 4090 GPU setup.

For fine-tuning, we use Gemini Flash 2.0 (Team
et al., 2024), PubMedBERT (Gu et al., 2021), and
ModernBERT (Warner et al., 2024). Models are
trained on the augmented dataset for 200 epochs us-
ing an NVIDIA A100 and RTX 4090. The training
is configured with a learning rate of 5e-5, a se-
quence length of 512, and a batch size of 90. This
pipeline effectively combines LLM-based augmen-
tation, retrieval-augmented generation, and fine-
tuning to enhance data quality and downstream
model performance.

4.2 Evaluation
We evaluate Subtask 1 and Subtask 2 using the
macro-averaged F1-score. The macro-F1 for haz-
ards, computed over all hazard classes Ch, is:

F1hazards =
1

|Ch|
∑

c∈Ch

2 · Pc ·Rc

Pc +Rc
(6)

where Pc and Rc are the precision and recall for
hazard class c, |Ch| represents the number of hazard
classes, and Ch is the set of all hazard classes. For
products, we compute F1 only on the subset S
where hazard predictions are correct:

S =
{
i | ypred

h (i) = ytrue
h (i)

}
(7)

where i is a sample index, ypred
h (i) is the predicted

hazard label, and ytrue
h (i) is the ground truth hazard

label for sample i. The product macro-F1 over
subset S is:

F1products =
1

|Cp|
∑

k∈Cp

2 · PS
k ·RS

k

PS
k +RS

k

(8)

where PS
k and RS

k are the precision and recall for
product class k computed over subset S, |Cp| is the
number of product classes, and Cp is the set of all

product classes. The final score averages both F1
scores:

Score =
F1hazards + F1products

2
(9)

This scoring emphasizes hazard prediction. Prod-
uct outputs only count when hazards are correctly
predicted. A perfect system scores 1.0, correct
hazards but failed products score 0.5, and incor-
rect hazards result in a score of 0.0, regardless of
product predictions.

5 Results

5.1 Overview of the SemEval-2025 Task 9
Table 2 presents the detailed leaderboard results.
Out of more than 260 participating teams world-
wide, 27 system description papers were submitted
for peer review. The table highlights the rankings
of the top 20 systems, showcasing the diverse ap-
proaches in the shared task 4.

The SemEval-2025 Task 9: The Food Hazard
Detection Challenge attracted significant global at-
tention, emphasizing the growing research interest
in automated food hazard detection. The competi-
tion was organized into two independent subtasks.
Our team, My My (ST1: 2nd, ST2: 2nd), achieved
substantial and consistent results, ranking second
in both Subtask 1 (score: 0.8112) and Subtask 2
(score: 0.5278).

Our approach demonstrated superior overall bal-
ance across the two subtasks compared to other
top-performing teams. For instance, while Anas-
tasia (ST1: 1st, ST2: 21st) ranked first in Subtask
1, their performance dropped significantly to 21st
place in Subtask 2. Conversely, SRCB (ST1: 3rd,
ST2: 1st) ranked first in Subtask 2 but only third in
Subtask 1. In contrast, My My maintained top-tier
performance across both tasks, indicating the ro-
bustness and adaptability of our system to varying
task requirements and evaluation criteria.

4https://food-hazard-detection-semeval-2025.
github.io/
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5.2 Performance of Our Ensemble Approach

Our ensemble method, which combines Gemini
Flash, PubMedBERT, and ModernBERT, consis-
tently outperformed individual models across both
Food Hazard Detection Challenge subtasks. As
shown in Table 3, the ensemble achieved a Macro-
F1 score of 0.8112 in Subtask 1, surpassing Pub-
MedBERT’s score of 0.7931, with strong F1-scores
in both hazard-category (0.8032) and product-
category (0.8193) classification. In Subtask 2, the
ensemble recorded a Macro-F1 score of 0.5278,
exceeding ModernBERT’s score of 0.5151, and
also achieved the highest F1-scores for hazard
(0.6892) and product (0.3665) detection. These
results demonstrate that the ensemble approach ef-
fectively balances precision and recall, particularly
in the context of imbalanced and diverse food haz-
ard datasets.

The advantage of ensembling lies in leveraging
the complementary strengths of each model: Pub-
MedBERT’s biomedical expertise, ModernBERT’s
ability to handle long contexts, and Gemini Flash’s
efficiency and effectiveness when fine-tuned on
short-text classification tasks. By aggregating pre-
dictions, the ensemble reduces the risk of individ-
ual model biases and improves robustness, espe-
cially for rare and underrepresented classes. Our
system’s consistent top-2 ranking in the SemEval-
2025 Challenge across both subtasks further high-
lights this approach’s practical value and reliability
for real-world food safety applications.

5.3 Analysis

Our Knowledge-Augmented Data Method stands
out for its balanced performance across both sub-
tasks, demonstrating strong robustness. Unlike
Team Anastasia (fixed token chunking and ensem-
bling) or Team SRCB (two-stage DeBERTa+LLM
pipeline), our approach leverages RAG with val-
idation filtering to ensure high-quality augmenta-
tion. This streamlined pipeline addresses class im-
balance and enhances representation for rare cate-
gories, leading to consistent results across hazard
and product classifications.

As shown in Appendix D, our method achieves
a more balanced distribution of underrepresented
classes while maintaining competitive performance.
The confusion matrices in Appendix C, which pro-
vide class-wise prediction breakdowns for both sub-
tasks, show significantly reduced false negatives
in rare hazard categories, confirming our system’s

effectiveness. These results underscore the scala-
bility and practicality of our method for real-world
food hazard detection tasks.

6 Conclusion

Our research demonstrates that a Knowledge-
Augmented Data approach significantly improves
the accuracy and reliability of food hazard detec-
tion. By integrating RAG with advanced data
filtering, our system achieved top rankings in
SemEval-2025 Task 9, showcasing the effective-
ness of domain-specific knowledge in addressing
data limitations. This highlights the potential of
knowledge-driven AI to enhance food safety by
rapidly and accurately identifying incidents from
diverse online sources. Future work will optimize
model efficiency for large-scale deployment and
improve recall in product classification to maxi-
mize real-world impact. Importantly, our results
underscore the value of explainability and trans-
parency, which are essential for building trust and
facilitating adoption in practical food safety appli-
cations.

7 Limitations

Although effective, our knowledge-augmented data
approach has limitations. The retrieval process
from external sources, such as PubMed, can oc-
casionally return irrelevant or incorrect results,
compromising data quality. Dependency on ex-
ternal knowledge also introduces latency, limit-
ing real-time applicability. The validation filter-
ing process may also exclude valuable samples
below the scoring threshold, reducing dataset di-
versity. Finally, the ensemble method increases
computational costs, making it less suitable for
resource-constrained environments. Future work
will improve retrieval accuracy, refine validation
techniques, and optimize computational efficiency.
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via document retrieval, LLM-based augmentation,
quality filtering, and ensemble fine-tuning.

Algorithm 1 Knowledge-Augmented Data Method
Require: Food Hazard Dataset D
Ensure: Predictions ŷSubtask1, ŷSubtask2
▷ Step 1: Data Splitting
Split D into Dtrain, Dval, Dtest
▷ Step 2: Knowledge-Augmented Data Generation
▷ 2.1 Information Retrieval System
Qsimple ← Gquery(Qcomplex)
Dpubmed ← RETRIEVEPUBMED(Qsimple,K)
Vpubmed ← Embed(Dpubmed) ▷ Convert to embeddings
VectorDB← Store(Vpubmed) ▷ Store into vector database
sim(voriginal, vd)← voriginal·vd

∥voriginal∥∥vd∥ ▷ Compute similarity
Dretrieved ← {di | i ∈ argmaxK(sim(voriginal, vd))} ▷
Retrieve top-K documents
▷ 2.2 Data Generation
Saugmented ← Ggen(Dretrieved, Soriginal)
▷ 2.3 Validation Filtering
Sfiltered ← {s | Gval(s,Dretrieved) ≥ τ}
▷ 2.4 Fine-tune with Enriched Data
Dfinal ← Dtrain ∪ Sfiltered
▷ Step 3: Fine-tune Models
for M ∈ {Gemini Flash, PubMedBERT,ModernBERT}
do

M ← FINETUNE(Dfinal,M )
end for
▷ Step 4: Inference
for M ∈ {Gemini Flash, PubMedBERT,ModernBERT}
do

Ptask1,M ← INFERENCE(Dtest,M )
Ptask2,M ← INFERENCE(Dtest,M )

end for
▷ Step 5: Ensemble Approach
ŷSubtask1 ← argmaxy∈Y1

∑
i wiPtask1,i(y)

ŷSubtask2 ← argmaxy∈Y2

∑
i wiPtask2,i(y)

return ŷSubtask1, ŷSubtask2

B Prompt Template

Prompt 1: Simple Query

Simplify verbose queries from the internet into concise
ones while retaining essential terms.

Follow these rules:

1. Identify and retain all critical keywords, names, and
technical terms.

2. Simplify the query to be concise and under 10 words.

3. Ensure the simplified query preserves the original
meaning.

Example:

• Verbose: The Canadian Food Inspection Agency warns
consumers about undeclared pecans in Originale Au-
gustin Ice Cream in Quebec.

• Simplified: Undeclared pecans in Originale Augustin
Ice Cream recall.

Task: Simplify the input query: {passage}, and output
only the simplified query.

Prompt 2: Data Generation

You are tasked with paraphrasing the given passage to
generate data for food hazard detection.

Follow these rules:

1. Retain critical information such as food product
names, batch numbers, contamination types, and af-
fected regions.

2. Ensure contextual accuracy: the paraphrase must be
precise and align with the original context. Do not
alter the meaning or factual content.

3. Highlight key hazards (e.g., contamination, unde-
clared allergens) and their potential risks to public
health.

<context> {context} </context>

Here is your task: Given the input: {passage}

• Paraphrase it according to the rules above, ensuring
the augmented text highlights key food hazards and is
consistent with the context.

• Output only the paraphrased result, with no additional
comments.

Prompt 3: Validation Filtering

You are tasked with evaluating paraphrased text as a form
of data augmentation, using the following scoring system:

Scoring System:

• 0: The data augmentation result is the same as the
reference text.

• 1: The data augmentation result is completely unre-
lated to the reference text.

• 2: The data augmentation result has minor rele-
vance but does not align with the reference text.

• 3: The data augmentation result has moderate rele-
vance but contains inaccuracies.

• 4: The data augmentation result aligns with the
reference text but has minor errors or omissions.

• 5: The data augmentation result is accurate and
aligns perfectly with the reference text.

Task:

• Given the original text: {original_text}

• Given the augmented text: {augmented_text}

• Evaluate the paraphrased text and assign a score from
0 to 5.

We designed three prompt templates to enhance
food hazard detection: Simple Query (Prompt 1),
Data Generation (Prompt 2), and Validation Filter-
ing (Prompt 3).
Prompt 1: Simple Query condenses verbose
queries while preserving key terms for effective
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knowledge retrieval.

Prompt 2: Data Generation paraphrases data
while maintaining critical details, improving
dataset diversity, and addressing class imbalance.

Prompt 3: Validation Filtering evaluates aug-
mented samples, retaining only high-quality data
to ensure dataset integrity.

These prompts optimize retrieval, augmentation,
and quality control, strengthening food hazard de-
tection.

C Confusion Matrices

The confusion matrices in Figures 3 and 4 show that
my method gives good results. Most predictions
are along the diagonal, indicating high accuracy
for both tasks. Misclassifications are limited and
mainly between similar classes, demonstrating the
approach’s effectiveness. This pattern also suggests
that the model can be generalized well even for
underrepresented categories.

D Data Augmentation Pipeline Analysis

D.1 Addressing Class Imbalance

The Food Hazard Detection Dataset shows signifi-
cant class imbalance across several categories, as
illustrated in Figures 5, 6, 7, and 8. For example,
Figure 8 reveals a highly skewed product distribu-
tion, with a few dominant classes and over 1,142
unique product types, most of which are under-
represented. Similarly, Figure 5 shows that cer-
tain hazard types disproportionately dominate the
dataset.

The data augmentation pipeline effectively mit-
igates these imbalances, as shown by the more
balanced distributions (in red). Underrepresented
classes are significantly boosted in both hazard-
category and product-category. In particular,
Figure 8 highlights the improved balance post-
augmentation, reducing the dominance of frequent
classes and ensuring fairer representation. These
adjustments are essential for enhancing model per-
formance on rare but important categories.

D.2 Model Success Rates

Table 4 provides insights into the success rates of
different models used in the augmentation pipeline.
The success rate is calculated using the formula:

Success Rate (%) =
Filtered

Augmentation
× 100 (10)

Method Augmentation Filtered Success Rate (%)
Llama 3.1 8B 30,000 22,659 75.53
GPT 3.5 Turbo 8,000 6,500 81.25
Gemini Flash 2.0 6,800 5,625 82.72
Mixtral 8x7B 32,171 25,187 78.27

Table 4: Comparison of different language models in
the data augmentation pipeline. The table presents the
total number of augmented samples, the number of fil-
tered samples that passed quality checks, and the overall
success rate (%) for each model.
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Figure 3: Confusion matrix for hazard-category. Each
cell indicates the instances where the predicted label
(columns) matches the true label (rows), with color in-
tensity representing the row-normalized percentage.

For example, Llama 3.1 8B generated 30,000 sam-
ples with 22,659 passing quality checks, achiev-
ing a success rate of 75.53%. Similarly, Mixtral
8x7B produced 32,171 augmented samples with
25,187 filtered samples, resulting in a success rate
of 78.27%. Smaller models like GPT 3.5 Turbo
and Gemini Flash 2.0 generated fewer samples
but achieved higher success rates of 81.25% and
82.72%, respectively.

These results highlight a trade-off between scale
and filtering efficiency in augmentation. Larger
models like Llama and Mixtral excel at generating
high-volume data but have slightly lower success
rates due to their broader scope. On the other hand,
smaller models such as GPT and Gemini produce
fewer samples but maintain higher precision dur-
ing filtering. This balance between quantity and
quality is crucial for optimizing data augmentation
pipelines.
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Figure 4: Confusion matrix for product-category. Each cell indicates the instances where the predicted label
(columns) matches the true label (rows), with color intensity representing the row-normalized percentage.
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Figure 5: Comparison of hazard-category distributions before and after balancing.

Figure 6: Comparison of product-category distributions before and after balancing.

Figure 7: Comparison of hazard distributions before and after balancing.

Figure 8: Comparison of product distributions before and after balancing.
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