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Abstract

Multi-label emotion classification in NLP re-
quires models to capture complex emotional nu-
ances in text. This study explores transformer-
based models, primarily fine-tuning BERT-
base-uncased, for classifying five perceived
emotions: anger, fear, joy, sadness, and sur-
prise. As part of SemEval 2025 Task 11 (Track
A) in English, we preprocess text using tok-
enization, stopword removal, and lemmatiza-
tion. Baseline models employing logistic re-
gression with TF-IDF establish performance
benchmarks. To address class imbalance, we
fine-tune BERT using weighted binary cross-
entropy loss, further improving classification
with threshold optimization. Experimental re-
sults demonstrate that fine-tuned BERT sig-
nificantly outperforms traditional approaches,
achieving a macro F1-score of 0.6675, which
rises to 0.7062 after threshold optimization.
Comparative analysis against ROBERTa fine-
tuning, CNN-TF-IDF hybrids, and XGBoost
classifiers highlights the superiority of contex-
tual embeddings for multi-label classification.
While threshold tuning enhances recall and
precision, challenges like class imbalance and
inter-class confusion persist, motivating future
research into ensemble models and domain-
adaptive training.

1 Introduction

Emotion classification in NLP is essential for iden-
tifying perceived emotions, which reflect how an
audience interprets a speaker’s sentiment. Unlike
sentiment analysis, which categorizes text as pos-
itive, negative, or neutral, multi-label emotion de-
tection captures multiple co-occurring emotions in
a single instance.

This study focuses on SemEval 2025 (Track A)
for multi-label emotion detection in English, clas-
sifying text snippets into six perceived emotions:
joy, sadness, anger, fear, surprise, and disgust.
Rather than identifying the speaker’s true emotions

or reader’s reactions, the task centers on commonly
inferred emotions, influenced by linguistic and cul-
tural factors.

We fine-tune a BERT-based model to capture
contextual dependencies while addressing class im-
balance and label co-occurrence challenges. Our
approach includes text preprocessing with SpaCy,
dataset analysis, and hyperparameter tuning. TF-
IDF-based models serve as baselines, and weighted
binary cross-entropy loss is used for training. Per-
formance is evaluated via F1-score, the official met-
ric for the task.

Experimental results show that transformer-
based models significantly outperform traditional
methods, effectively detecting multiple emotions
per instance. Despite improvements, challenges
like inter-class confusion and label ambiguity re-
main. This study provides insights into optimizing
multi-label emotion classification and outlines di-
rections for future research.

2 Related Work

CM-MEC-21, introduced by Ameer et al. (Tang
et al., 2020), serves as a benchmark dataset for
multi-label emotion classification in code-mixed
(English-Roman Urdu) SMS messages. The
study evaluated traditional machine learning, deep
learning, and transformer-based models (BERT,
XLNet), revealing that n-gram-based features
with OVR Naive Bayes achieved the highest
Micro-F1 score of 0.67. This finding underscores
the limitations of deep learning in low-resource
environments and the continued relevance of
feature-driven approaches.

Exploring subjectivity and sentiment analysis,
Wiebe et al. (Wiebe et al., 2005) introduced a
detailed corpus annotation framework. Their
methodology focused on phrase-level subjectivity
rather than sentence-level labels, incorporating
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nuanced elements such as private states, beliefs,
and nested sources of emotion. The framework has
since been widely adopted for opinion mining and
sentiment classification tasks.

To enhance emotion classification from text,
Abas et al. (Abas et al., 2022) proposed a hybrid
model combining BERT embeddings with a
CNN-based classifier. Their approach leveraged
BERT’s contextual word representations while
utilizing CNNss for final classification. Evaluations
on the SemEval-2019 Task 3 and ISEAR datasets
demonstrated that the BERT-CNN model outper-
formed baseline methods, achieving an F1-score of
94% on SemEval and 76% on ISEAR.

Shifting towards non-transformer-based ap-
proaches, Liu et al. (Liu et al., 2023) refined the
multi-label K-Nearest Neighbors (MLKNN) algo-
rithm for short-text emotion classification. Their
model incorporated both local sentence-level fea-
tures and global contextual dependencies, improv-
ing classification accuracy through iterative re-
finement based on emotion transfer probabilities.
Experiments on the Sentiment140 Twitter corpus
demonstrated that the enhanced MLKNN model
(with optimized K = 8 and a = 0.7) outperformed
traditional MLKNN approaches, achieving a recall
rate of 0.8019. Their findings highlight the effec-
tiveness of integrating local and global contextual
information for multi-label emotion classification.

3 System Overview

3.1 Data Preprocessing and Exploration

The dataset (Muhammad et al., 2025a) used in this
study consists of short text samples annotated with
multiple emotion labels. The emotions considered
are anger, fear, joy, sadness, and surprise. Each
text instance may be associated with one or more
emotion labels, making it a multi-label classifica-
tion task. The dataset was loaded and analyzed to
understand its structure and characteristics.

3.1.1 Preprocessing Steps

To ensure data quality and enhance feature extrac-
tion for the classification model, a series of prepro-
cessing steps were applied:

¢ Text Normalization: All text was converted
to lowercase, and punctuation and numerical
characters were removed.

* Stopword Removal: Non-informative words
were filtered using the built-in SpaCy stop-
word list.

* Lemmatization: Words were reduced to their
base forms using SpaCy’s lemmatizer to stan-
dardize textual representations.

* Negation Handling: Words following nega-
tion terms such as "not", "never", and "no"
were concatenated with the negation marker

(e.g., not good — not_good).

* Rare and Frequent Word Removal: Words
appearing with extremely low frequency (less
than 2 occurrences) or extremely high fre-
quency (above 95% of total words) were re-
moved to mitigate noise.

After preprocessing, the cleaned text was saved
for further analysis and model training.

3.1.2 Dataset Exploration and Visualization

To understand the dataset distribution, various sta-
tistical and visual analyses were performed.

Text Length and Word Count Distribution To
analyze textual characteristics, the distribution of
text lengths (character count) and word counts was
visualized. Figures 1 and 2 illustrate these distribu-
tions.
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Figure 1: Text Length Distribution

Emotion Correlation Analysis To examine rela-
tionships between different emotions, a correlation
matrix was computed using the label co-occurrence
data. Figure 3 presents the heatmap of correlation
values.

The dataset is imbalanced, with fear as the
most frequent label. Many instances contain mul-
tiple emotions, requiring a robust multi-label ap-
proach. Most texts are under 100 characters, and
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Figure 2: Word Count Distribution
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Figure 3: Correlation Between Emotions

co-occurrence analysis highlights strong associa-
tions between specific emotion pairs, aiding label
dependency modeling.

3.2 Threshold Optimization Methodology

For multi-label classification, we optimize predic-
tion thresholds for each emotion class to maximize
Fl-scores. The optimization process begins by
computing the class probabilities from the model
logits using a sigmoid activation function. We then
evaluate precision, recall, and F1-scores across a
range of thresholds, 7 € [0.1,0.9], with a step size
of 0.01. For each emotion class, we select the opti-
mal threshold, 77, which maximizes the F1-score
for that class. Specifically, the optimal threshold is
determined by:

2. P.(7) - Re(7)
P.(1) 4+ Re(7) ’

75 =71 € [0.1,0.9]argmax

where P.(7) and R.(T) represent the precision
and recall for class c at threshold 7. Once the
optimal thresholds are determined, they are applied
during inference to maximize the performance of
the classification model.

In particular, for anger, lowering the threshold
from 0.5 to 0.21 resulted in a significant improve-

ment in recall by 21.5% (from 0.354 to 0.569), at
a modest cost to precision (from 0.697 to 0.617).
This adjustment helped mitigate the issue of under-
detection in anger cases. The threshold optimiza-
tion also highlighted the different characteristics of
each emotion class. For fear, the optimal threshold
was higher, at 0.33, which reflected the confident
predictions made for this emotion. In contrast, sad-
ness benefited from a lower threshold of 0.21, better
capturing its more subtle expressions.

While threshold optimization provided overall
performance gains, it also introduced some trade-
offs. One such trade-off was the impact on pre-
cision, especially for minority classes like anger,
where the precision dropped by 8% in order to
achieve a 21.5% increase in recall. Additionally,
false positives increased for some of the minority
classes, although this was mitigated by the signifi-
cant reduction in false negatives, resulting in a 7%
overall increase in recall.

The threshold optimization process led to sev-
eral noteworthy improvements. Specifically, the
macro Fl-score increased from 0.6435 to 0.6814,
reflecting a 5.88% improvement. The most dra-
matic gain was observed in anger, which saw an
impressive 26.1% increase in its F1-score. Other
emotion classes, such as joy and surprise, also saw
balanced improvements, with their F1-scores in-
creasing by 10.4% and 10.2%, respectively. These
results are summarized in Table 1.

4 Baseline Approaches

To establish a foundational benchmark for multi-
label emotion classification, we experimented with
logistic regression models trained on TF-IDF repre-
sentations of text. These models were selected due
to their efficiency and interpretability in text clas-
sification tasks. Multiple variations were explored
to examine the impact of feature engineering, class
imbalance handling, and threshold optimization.

4.1 TF-IDF with Logistic Regression

The first model utilized a TF-IDF vectorizer with
a vocabulary size of 5000, setting a document fre-
quency range of 2% to 90%. A One-vs-Rest logis-
tic regression classifier was trained on these fea-
tures. The training and evaluation were conducted
using an 80-20 train-test split.

4.1.1 Logistic Regression with Class Weights

To mitigate the issue of class imbalance, a weighted
logistic regression model was trained using class
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Table 1: Threshold Optimization Ablation Study

Emotion Optimal 7 F1(0.5) F1(Opt) Imp. Prec (0.5) Prec (Opt) Rec(0.5) Rec (Opt)
Anger 0.21 0.469 0.592 +26.1% 0.697 0.617 0.354 0.569
Fear 0.33 0.828 0.853 +3.0% 0.848 0.823 0.809 0.885
Joy 0.28 0.633 0.699 +10.4% 0.728 0.696 0.560 0.701
Sadness 0.21 0.669 0.709 +6.1% 0.789 0.665 0.581 0.760
Surprise 0.24 0.625 0.689 +10.2% 0.741 0.681 0.541 0.698

weights computed dynamically based on label dis-
tributions. This approach aimed to improve recall
for minority classes while maintaining precision
for dominant classes.

4.1.2 Feature Engineering and Threshold
Optimization

Refinements included expanding TF-IDF to 10,000

tokens with bigrams for better context, applying

sublinear scaling to balance term frequencies, and

optimizing thresholds to enhance classification per-

formance.

While these refinements contributed to an in-
crease in overall performance, the results highlight
the limitations of traditional models in capturing
nuanced emotional expressions. These findings
motivate the need for more sophisticated represen-
tations, such as deep contextual embeddings, to
better model complex emotional variations.

5 Advanced Implementations and
Experimental Analysis

To tackle multi-label emotion classification, we
explored various deep learning approaches, lever-
aging pre-trained transformers and hybrid architec-
tures integrating TF-IDF and CNNss.

5.1 BERT Fine-Tuning for Multi-Label
Emotion Classification

We fine-tuned BERT-base-uncased for multi-label
classification using tokenized input (max sequence
length = 128). Training employed the AdamW
optimizer (2e~° learning rate, 0.01 weight decay)
with binary cross-entropy loss. While achieving
strong performance, particularly in detecting fear
(F1 = 0.79), the model struggled with anger (F1
= 0.46). Threshold optimization improved macro
F1-score from 0.6491 to 0.6816.

5.2 RoBERTa Fine-Tuning for Multi-Label
Emotion Classification

Using RoBERTa-base, we followed a similar fine-
tuning approach but with a higher learning rate

(3¢7%) and a 10% warm-up proportion. Initially, it
failed to learn representations for most emotions,
resulting in a low macro Fl-score (0.1493). Af-
ter threshold optimization, performance improved
significantly (macro F1-score = 0.4547), though
classification imbalance remained a challenge.

5.3 DistilBERT Embeddings with XGBoost
Classifier

DistilBERT’s [CLS] token embeddings were ex-
tracted and used as input for an XGBoost clas-
sifier (50 estimators, depth 4, learning rate 0.1).
Although it leveraged contextual embeddings, it
did not match fine-tuned transformers, achieving
a macro Fl-score of 0.4671 with poor recall for
anger (F1 =0.15).

5.4 RoBERTa Embeddings with XGBoost
Classifier

RoBERTa embeddings were extracted similarly
and trained with XGBoost (100 estimators, 0.05
learning rate). However, its macro Fl-score
(0.2472) indicated that static embeddings alone
were insufficient for effective classification, lead-
ing to poor recall for most emotions except fear.

5.5 CNN with TF-IDF and DistilBERT
Hybrid Model

We combined TF-IDF features (10,000 n-grams)
with DistilBERT embeddings in a CNN architec-
ture using convolutional layers, max-pooling, and
dropout. The hybrid approach improved represen-
tation learning but remained limited by dataset con-
straints, with a macro F1-score of 0.5125 and rela-
tively weak performance for joy and sadness.

Fine-tuned BERT and RoBERTa models outper-
formed other approaches, demonstrating the effec-
tiveness of contextual embeddings. Threshold op-
timization improved recall, while XGBoost with
transformer embeddings failed to capture deep de-
pendencies. CNN-hybrid models leveraged multi-
feature representation but remained limited by data
constraints.
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5.6 Experimental Evaluation and Test Results

We validated our approaches on an external test
set using two fine-tuned BERT-base-uncased mod-
els with different learning rates to assess gener-
alization, optimize classification thresholds, and
refine fine-tuning strategies. For all models eval-
uated in this study, including logistic regression,
transformer-based models, and hybrid approaches,
we maintained consistency by using the same vali-
dation set for threshold optimization and the same
held-out test set for final performance evaluation,
ensuring fair comparison.

5.6.1 Fine-Tuned BERT Models

The first model was trained with a learning rate of
3e~?, batch size 16, and a warm-up proportion of
10%, applying early stopping over 10 epochs. The
second model used a lower learning rate of 2¢~°
for improved stability. Both models employed
AdamW optimization and binary cross-entropy loss
for multi-label classification.

Results and Threshold Optimization Before
threshold optimization, both models achieved a
macro F1-score of approximately 0.667, with fear
consistently scoring highest and anger the lowest.
Applying optimized classification thresholds im-
proved the macro F1-score to 0.7047 for Model 1
and 0.7062 for Model 2, enhancing recall, particu-
larly for underrepresented emotions. The results in-
dicate that threshold tuning significantly refines de-
cision boundaries, and variations in learning rates
have minimal impact when proper threshold selec-
tion is applied.

5.6.2 Final Predictions and Observations

Using the best-performing model (learning rate
2¢~? with optimized thresholds), predictions on the
external test set showed stable F1-scores across all
emotions. The model effectively generalized, with
threshold tuning improving recall and classification
accuracy. However, class imbalance persisted, sug-
gesting potential enhancements through ensemble
learning and data augmentation.

Fine-tuned BERT models, combined with thresh-
old optimization, demonstrated superior multi-
label classification performance. Learning rate vari-
ations had little impact on final results when proper
threshold tuning was applied. The study under-
scores the necessity of threshold optimization for
imbalanced datasets, proving the effectiveness of

transformer-based fine-tuning for emotion classifi-
cation in real-world applications.

6 Results and Performance Evaluation

This section presents a comprehensive analysis of
the results obtained from our experiments on multi-
label emotion classification. The models were fine-
tuned on the preprocessed dataset and evaluated
based on key performance metrics, including macro
Fl1-score, precision, recall, and accuracy. Addi-
tionally, we conducted threshold optimization to
enhance the classification performance. The results
are consolidated in the following subsections.

6.1 Initial Performance Evaluation

The logistic regression model trained on TF-IDF
features exhibited strong performance for frequent
emotions (fear, surprise) but struggled with minor-
ity classes (anger, joy). Introducing class weights
improved recall, and further threshold tuning en-
hanced classification, achieving a macro F1-score
of 0.54, as shown in Table 2.

Table 2: Performance of Logistic Regression Models
with TF-IDF

Emotion Class  Initial Model With Class Weights Optimized Model

Anger 0.03 0.33 0.35
Fear 0.73 0.67 0.76
Joy 0.17 0.42 0.44
Sadness 0.38 0.54 0.58
Surprise 0.43 0.61 0.65
Macro F1-score 0.32 0.50 0.54

The initial evaluation of the fine-tuned BERT-
base-uncased models, before applying threshold
optimization, revealed significant variations in clas-
sification performance across different emotion
classes. Table 3 summarizes the macro F1-score
and per-class F1-scores before threshold optimiza-
tion.

Table 3: Performance of Fine-Tuned BERT Models
Before Threshold Optimization

Emotion Class Model 1 (LR =3¢°) Model 2 (LR =2¢77)

Anger 0.53 0.54
Fear 0.81 0.80
Joy 0.65 0.64
Sadness 0.65 0.67
Surprise 0.71 0.68

Macro F1-score 0.6678 0.6675

The results indicate that fear was consistently
the best-classified emotion, achieving an F1-score
above 0.80 in both models, suggesting that the
model effectively captured its contextual cues. In
contrast, anger had the lowest performance, high-
lighting the difficulty in distinguishing it from other
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emotions in multi-label classification. Addition-
ally, the macro F1-scores of both models remained
nearly identical before threshold optimization, indi-
cating that variations in learning rates had minimal
impact on classification performance.

6.2 Impact of Threshold Optimization

To refine the predictions and improve model per-
formance, we optimized classification thresholds
for each emotion class. Instead of using the default
threshold of 0.5, an optimal probability threshold
was determined by maximizing the per-class F1-
score. The performance gains achieved through
this optimization are presented in Table 4.

Table 4: Performance of Fine-Tuned BERT Models
After Threshold Optimization

Emotion Class Model 1 (LR = 36’5) Model 2 (LR = Qe’s)

Anger 0.60 0.61
Fear 0.82 0.82
Joy 0.68 0.65
Sadness 0.69 0.69
Surprise 0.74 0.76

Optimized Macro F1-score 0.7062

Threshold optimization proved highly effective,
increasing the macro Fl-score by approximately
3-4%. The most significant improvement was ob-
served in anger, where the Fl-score rose from
0.53 to 0.61, addressing its previously weak per-
formance. Surprise benefited the most, with an
F1-score increase of 4-8%, enhancing recall while
maintaining precision. Notably, the impact of learn-
ing rate variations remained minimal after optimiza-
tion, with Model 2 showing a slight edge in macro
Fl-score.

6.3 Performance on Test Set

The final evaluation was conducted on an unseen
test set using the best-performing model (Model
2, learning rate = 2¢ >, optimized thresholds). Ta-
ble 5 presents the final performance metrics.

Table 5: Final Performance on External Test Set

Metric Before Optimization After Optimization
Macro F1-score 0.6675 0.7062

Micro Fl-score 0.72 0.75
Weighted F1-score 0.71 0.74
Precision 0.70 0.73

Recall 0.69 0.76

The external test set evaluation confirmed the
model’s strong generalization, as the macro F1-
score remained consistent. Notable improvements
were observed in micro and weighted F1-scores,
indicating enhanced prediction stability across all
emotion classes. Additionally, recall increased by

7% post-optimization, demonstrating that thresh-
old tuning effectively reduced false negatives and
improved overall classification performance.

6.4 Conclusion

Fine-tuned BERT models proved highly effective
for multi-label emotion classification, outperform-
ing traditional methods like logistic regression with
TF-IDF. Threshold optimization significantly im-
proved recall and decision boundaries, especially
for underrepresented emotions like anger and joy.

While fear and surprise were well-classified,
anger remained the most challenging, highlight-
ing difficulties in distinguishing subtle emotional
cues. Alternative models including XGBoost with
transformer embeddings fell short, emphasizing the
importance of contextualized embeddings. Chal-
lenges like class imbalance and inter-class con-
fusion persist, suggesting future work on ensem-
ble learning, contrastive pretraining, and domain-
adaptive fine-tuning. Integrating textual, visual,
and audio cues through multi-modal approaches
could further improve real-world emotion detec-
tion.
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